Highly multiplexed single cell in situ transcriptomic analysis

157862-Thumbnail Image.png
Description
Spatial resolved detection and quantification of ribonucleic acid (RNA) molecules in single cell is crucial for the understanding of inherent biological issues, like mechanism of gene regulation or the development and maintenance of cell fate. Conventional methods for single cell

Spatial resolved detection and quantification of ribonucleic acid (RNA) molecules in single cell is crucial for the understanding of inherent biological issues, like mechanism of gene regulation or the development and maintenance of cell fate. Conventional methods for single cell RNA profiling, like single-cell RNA sequencing (scRNA-seq) or single-molecule fluorescent in situ hybridization (smFISH), suffer either from the loss of spatial information or the low detection throughput. In order to advance single-cell analysis, new approaches need to be developed with the ability to perform high-throughput detection while preserving spatial information of the subcellular location of target RNA molecules.

Novel approaches for highly multiplexed single cell in situ transcriptomic analysis were developed by our group to enable single-cell comprehensive RNA profiling in their native spatial contexts. Reiterative FISH was demonstrated to be able to detect >100 RNA species in single cell in situ, while more sophisticated approaches, consecutive FISH (C-FISH) and switchable fluorescent oligonucleotide based FISH (SFO-FISH), have the potential for whole transcriptome profiling at the single molecule sensitivity. The introduction of a cleavable fluorescent tyramide even enables sensitive RNA profiling in intact tissues with high throughput. These approaches will have wide applications in studies of systems biology, molecular diagnosis and targeted therapies.
Date Created
2019
Agent

Creating Paramagnetically-Labeled PF4 Mutants to Evaluate Interactions with Mac-1 in NMR

132135-Thumbnail Image.png
Description
PF4 (CXCL4) is a cationic platelet chemokine that has been identified as a ligand for the integrin Mac-1 (αMβ2). The interaction between PF4 and Mac-1 has been shown to cause leukocyte migration, improve phagocytosis, and trigger the up-regulation of Mac-1

PF4 (CXCL4) is a cationic platelet chemokine that has been identified as a ligand for the integrin Mac-1 (αMβ2). The interaction between PF4 and Mac-1 has been shown to cause leukocyte migration, improve phagocytosis, and trigger the up-regulation of Mac-1 expression in leukocytes, thereby increasing leukocytic adhesion. Though Mac-1 is known to serve as the site of interaction between PF4 and the leukocyte, the PF4 binding site of Mac-1 remains unknown. 1H-15N HSQC NMR spectroscopy of the interaction between PF4 and Mac-1’s binding site, the αMI domain, can provide this data. This project seeks to create PF4 mutants with site-directed spin labels to enhance the sensitivity of NMR for future experiments that seek to locate the PF4-Mac-1 binding site. It was hypothesized that the mutants created would adopt the native conformation and accept an MTSL label. Two mutants were successfully created and harvested, PF4 S17C and PF4 S26C. Both were soluble and the Sanger sequencing results show that primary structure was conserved except for the substitutions of structurally similar residues indicating the protein folds and likely adopts native conformation. PF4 S26C was labeled with MTSL, and 1H-15N HSQC NMR spectroscopy was performed on unlabeled PF4 S26C (at pH 3.40), MTSL-labeled PF4 S26C (at pH 3.15), and MTSL-labeled PF4 S26C exposed to ascorbic acid (at pH 3.15) to evaluate if the mutant accepts the label and, resultantly, experiences reduced signal intensity. Significant change in signal intensity occurred without change in location of the peaks between the unlabeled and labeled spectra, showing that PF4 S26C accepts the spin label without changing the protein structure and that the label works as expected; however, no change occurred after reducing the spin label with ascorbic acid, preventing confirmation that signal changes were exclusively caused by the MTSL-label. Therefore, though these mutants show potential for future titration with the αMI domain and the hypothesis is supported, a future attempt to reduce MTSL-labeled PF4 S26C at a higher pH (approximately pH 5) is required. Additionally, PF4 S17C should also be evaluated with the methodology used to assess PF4 S26C before its employment in future projects.
Date Created
2018-05
Agent

Blood plasma-based glycan nodes as lung cancer markers and the problem of biospecimen integrity in a multi-site clinical study

157319-Thumbnail Image.png
Description
Cancer is a major public health challenge and the second leading cause of death in the United States. Large amount of effort has been made to achieve sensitive and specific detection of cancer, and to predict the course of cancer.

Cancer is a major public health challenge and the second leading cause of death in the United States. Large amount of effort has been made to achieve sensitive and specific detection of cancer, and to predict the course of cancer. Glycans are promising avenues toward the diagnosis and prognosis of cancer, because aberrant glycosylation is a prevalent hallmark of diverse types of cancer. A bottom-up “glycan node analysis” approach was employed as a useful tool, which captures most essential glycan features from blood plasma or serum (P/S) specimens and quantifies them as single analytical signals, to a lung cancer set from the Women Epidemiology Lung Cancer (WELCA) study. In addition, developments were performed to simplify a relatively cumbersome step involved in sample preparation of glycan node analysis. Furthermore, as a biomarker discovery research, one crucial concern of the glycan node analysis is to ensure that the specimen integrity has not been compromised for the employed P/S samples. A simple P/S integrity quality assurance assay was applied to the same sample set from WELCA study, which also afford the opportunity to evaluate the effects of different collection sites on sample integrity in a multisite clinical trial.

Here, 208 samples from lung cancer patients and 207 age-matched controls enrolled in the WELCA study were analyzed by glycan node analysis. Glycan features, quantified as single analytical signals, including 2-linked mannose, α2‐6 sialylation, β1‐4 branching, β1‐6 branching, 4-linked GlcNAc, and outer-arm fucosylation, exhibited abilities to distinguish lung cancer cases from controls and predict survival in patients.

To circumvent the laborious preparation steps for permethylation of glycan node analysis, a spin column-free (SCF) glycan permethylation procedure was developed, applicable to both intact glycan analysis or glycan node analysis, with improved or comparable permethylation efficiency relative to some widely-used spin column-based procedures.

Biospecimen integrity of the same set of plasma samples from WELCA study was evaluated by a simple intact protein assay (ΔS-Cysteinylated-Albumin), which quantifies cumulative exposure of P/S to thawed conditions (-30 °C). Notable differences were observed between different groups of samples with various initial handling/storage conditions, as well as among the different collection sites.
Date Created
2019
Agent

Structural perspectives on glycosaminoglycan-binding proteins and their receptors

157186-Thumbnail Image.png
Description
Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved

Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved in diverse physiological activities ranging from bacterial infections to cell-cell/cell-ECM contacts. This thesis is devoted to understanding how interactions between GBPs and their receptors modulate biological phenomena. Bacteria express GBPs on surface that facilitate dissemination and colonization by attaching to host ECM. The first GBP investigated in this thesis is decorin binding protein (DBP) found on the surface of Borrelia burgdorferi, causative pathogens in Lyme disease. DBPs bind GAGs of decorin, a proteoglycan in ECM. Of the two isoforms, DBPB is less studied than DBPA. In current work, structure of DBPB from B. burgdorferi and its GAG interactions were investigated using solution NMR techniques. DBPB adopts a five-helical structure, similar to DBPA. Despite similar GAG affinities, DBPB has its primary GAG-binding site on the lysine-rich C terminus, which is different from DBPA. Besides GAGs, GBPs in ECM also interact with cell surface receptors, such as integrins. Integrins belong to a big family of heterodimeric transmembrane proteins that receive extracellular cues and transmit signals bidirectionally to regulate cell adhesion, migration, growth and survival. The second part of this thesis focuses on αM I-domain of the promiscuous integrin αMβ2 (Mac-1 or CD11b/CD18) and explores the structural mechanism of αM I-domain interactions with pleiotrophin (PTN) and platelet factor 4 (PF4), which are cationic proteins with high GAG affinities. After completing the backbone assignment of αM I-domain, paramagnetic relaxation enhancement (PRE) experiments were performed to show that both PTN and PF4 bind αM I-domain using metal ion dependent adhesion site (MIDAS) in an Mg2+ independent way, which differs from the classical Mg2+ dependent mechanism used by all known integrin ligands thus far. In addition, NMR relaxation dispersion analysis revealed unique inherent conformational dynamics in αM I-domain centered around MIDAS and the crucial C-terminal helix. These dynamic motions are potentially functionally relevant and may explain the ligand promiscuity of the receptor, but requires further studies.
Date Created
2019
Agent

Qualification of α-keto-analogs of amino acids in orange and potato juices: A pilot study into the feasibility of traditional protein-source replacement in healthy subjects

132257-Thumbnail Image.png
Description
Abstract: It has been established that α-keto-analogs of amino acids can be converted into the amino acids through transamination in vivo. This discovery led to breakthroughs in treating patients who had difficulty digesting traditional proteins, such as in chronic kidney

Abstract: It has been established that α-keto-analogs of amino acids can be converted into the amino acids through transamination in vivo. This discovery led to breakthroughs in treating patients who had difficulty digesting traditional proteins, such as in chronic kidney disease (CKD) sufferers where patients have poor kidney function, which poisons the blood with ammonia products.
This pilot study aimed to ascertain the potential for keto acid supplementation in the attempt to supply adequate protein building blocks to healthy populations, with the caveats that said supplementation 1) would utilize non-synthetic methods, 2) offer an alternative to high-phosphate protein supplies such as ruminant animals, and 3) reverse the ill effects of ammonia load by reducing nitrogen intake and consuming ammonia as a fuel for the process of protein synthesis. This proposed solution turns to orange juice and certain varietals of potato juice for their familiarity to consumers, innate nutritional values, and potential for mass-production by many existing companies. The work contained here represents the first phase of experimentation: qualifying the presence of α-keto-analogues of amino acids in these types of produce which, with transamination, could yield the amino acids necessary for adequate protein intake.
Results suggest that these juices do not contain adequate α-keto-analogs of amino acids to supplement proteins in either healthy or ill individuals.
Date Created
2019-05
Agent

Expression of the Fusogenic Protein Syncytin in Macrophages

132366-Thumbnail Image.png
Description
Cell fusion is a process that occurs in normal cells as well as in pathological cells. This process does not occur spontaneously, fusogens are required to mediate the process. Syncytin is one of the proteins that was determined to have

Cell fusion is a process that occurs in normal cells as well as in pathological cells. This process does not occur spontaneously, fusogens are required to mediate the process. Syncytin is one of the proteins that was determined to have fusogenic properties. Syncytin is a newly discovered transmembrane protein that is generally expressed in mammalian placenta and it is known for its role in cell fusion during placentation. The recent studies in Ugarova’s laboratory suggest syncytin is expressed in macrophages, thus it may be involved in macrophage cells fusion. This paper provides a literature review of syncytin protein; it also contains an experimental study conducted to determine syncytin expression on both RNA and protein level. The study was conducted on RNA and protein isolated from macrophages isolated from mouse peritoneum. Agarose gel electrophoresis and Western blot analysis were used to determine syncytin expression on RNA and protein level respectively. Using these methods, syncytin expression was determined at different time points during macrophage fusion. The results show that syncytin is not expressed in freshly isolated macrophages, but its expression is initiated during macrophage adhesion in the presence of IL-4.
Date Created
2019-05
Agent

INVESTIGATING MECHANISMS OF TRANSIENT RECEPTOR POTENTIAL REGULATION WITH NUCLEAR MAGNETIC RESONANCE AND ROSETTA COMPUTATIONAL BIOLOGY

156855-Thumbnail Image.png
Description
The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli

The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting regulator of TRP channels) is a small

membrane protein that modifies TRPV1 responses to heat and TRPM8 responses to cold.

In this dissertation, the first direct measurements between PIRT and TRPM8 are

quantified with nuclear magnetic resonance and microscale thermophoresis. Using

Rosetta computational biology, TRPM8 is modeled with a regulatory, and functionally

essential, lipid named PIP2. Furthermore, a PIRT ligand screen identified several novel

small molecular binders for PIRT as well a protein named calmodulin. The ligand

screening results implicate PIRT in diverse physiological functions. Additionally, sparse

NMR data and state of the art Rosetta protocols were used to experimentally guide PIRT

structure predictions. Finally, the mechanism of thermosensing from the evolutionarily

conserved sensing domain of TRPV1 was investigated using NMR. The body of work

presented herein advances the understanding of thermosensing and TRP channel function

with TRP channel regulatory implications for PIRT.
Date Created
2018
Agent

Understanding the Mechanical Behaviors of Lithium-Based Battery Anodes─Silicon and Lithium Metal

156144-Thumbnail Image.png
Description
This dissertation will investigate two of the most promising high-capacity anode

materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on

studying the mechanical behaviors of the two materials during charge and discharge and

understanding how

This dissertation will investigate two of the most promising high-capacity anode

materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on

studying the mechanical behaviors of the two materials during charge and discharge and

understanding how these mechanical behaviors may affect their electrochemical

performance.

In the first part, amorphous Si anode will be studied. Despite many existing studies

on silicon (Si) anodes for lithium ion batteries (LIBs), many essential questions still exist

on compound formation, composition, and properties. Here it is shown that some

previously accepted findings do not truthfully reflect the actual lithiation mechanisms in

realistic battery configurations. Furthermore the correlation between structure and

mechanical properties in these materials has not been properly established. Here, a rigorous

and thorough study is performed to comprehensively understand the electrochemical

reaction mechanisms of amorphous-Si (a-Si) in a realistic LIB configuration. In-depth

microstructural characterization was performed and correlations were established between

Li-Si composition, volumetric expansion, and modulus/hardness. It is found that the

lithiation process of a-Si in a real battery setup is a single-phase reaction rather than the

accepted two-phase reaction obtained from in-situ TEM experiments. The findings in this

dissertation establish a reference to quantitatively explain many key metrics for lithiated a

Si as anodes in real LIBs, and can be used to rationally design a-Si based high-performance

LIBs guided by high-fidelity modeling and simulations.

In the second part, Li metal anode will be investigated. Problems related to dendrite

growth on lithium metal anodes such as capacity loss and short circuit present major

barriers to the next-generation high-energy-density batteries. The development of

successful mitigation strategies is impeded by the incomplete understanding of the Li

dendrite growth mechanisms. Here the enabling role of plating residual stress in dendrite

initiation through novel experiments of Li electrodeposition on soft substrates is confirmed,

and the observations is explained with a stress-driven dendrite growth model. Dendrite

growth is mitigated on such soft substrates through surface-wrinkling-induced stress

relaxation in deposited Li film. It is demonstrated that this new dendrite mitigation

mechanism can be utilized synergistically with other existing approaches in the form of

three-dimensional (3D) soft scaffolds for Li plating, which achieves superior coulombic

efficiency over conventional hard copper current collectors under large current density.
Date Created
2018
Agent

Measuring the Activity of Φ29 DNA Polymerase

133245-Thumbnail Image.png
Description
The major goal of this large project is to develop a Recognition Tunneling Nanopore (RTP) device that will be used for determining the structure of glycosaminoglycans (GAGs). The RTP device is composed of a recognition tunneling junction that is embedded

The major goal of this large project is to develop a Recognition Tunneling Nanopore (RTP) device that will be used for determining the structure of glycosaminoglycans (GAGs). The RTP device is composed of a recognition tunneling junction that is embedded in a nanopore. In order to translocate the GAG molecule through the nanopore, researchers have designed a scheme in which the GAG molecule of interest will be attached to the 5’ end of a DNA primer (figure 1) and the DNA primer will be extended by a biotinylated Φ29 DNA polymerase that is anchored in the nanoslit using streptavidin. This research project specifically is part of a larger project with the main goal of comparing the activity of the wild-type Φ29 DNA polymerase which I have expressed and purified with the mutated Φ29 DNA polymerase devoid of 3’ - 5’ exonuclease activity which was made by Dr. Deng.
Date Created
2018-05
Agent

Highly multiplexed single-cell in situ RNA and DNA analysis with biorthogonal cleavable fluorescent oligonucleotides

Description
The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA

The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable linker connects oligonucleotides to fluorophores to show nucleic acids through in situ hybridization. Post-imaging, the fluorophores are effectively cleaved off in half an hour without loss of RNA or DNA integrity. Through multiple cycles of hybridization, imaging, and cleavage this approach proves to quantify thousands of different RNA species or genomic loci because of single-molecule sensitivity in single cells in situ. Different nucleic acids can be imaged by shown by multi-color staining in each hybridization cycle, and that multiple hybridization cycles can be run on the same specimen. It is shown that in situ analysis of DNA, RNA and protein can be accomplished using both cleavable fluorescent antibodies and oligonucleotides. The highly multiplexed imaging platforms will have the potential for wide applications in both systems biology and biomedical research. Thus, proving to be cost effective and time effective.
Date Created
2018-05
Agent