The major goal of this large project is to develop a Recognition Tunneling Nanopore (RTP) device that will be used for determining the structure of glycosaminoglycans (GAGs). The RTP device is composed of a recognition tunneling junction that is embedded…
The major goal of this large project is to develop a Recognition Tunneling Nanopore (RTP) device that will be used for determining the structure of glycosaminoglycans (GAGs). The RTP device is composed of a recognition tunneling junction that is embedded in a nanopore. In order to translocate the GAG molecule through the nanopore, researchers have designed a scheme in which the GAG molecule of interest will be attached to the 5’ end of a DNA primer (figure 1) and the DNA primer will be extended by a biotinylated Φ29 DNA polymerase that is anchored in the nanoslit using streptavidin. This research project specifically is part of a larger project with the main goal of comparing the activity of the wild-type Φ29 DNA polymerase which I have expressed and purified with the mutated Φ29 DNA polymerase devoid of 3’ - 5’ exonuclease activity which was made by Dr. Deng.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human…
Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating, plant-based systems such as the geminiviral replicon system. This project entails the cloning process of HBc-DIII fusion protein, a VLP that should form Domain III of the Envelope protein on West Nile Virus, into deconstructed geminiviral vector. The cloning process includes the HBc-DIII fusion protein DNA isolation, restriction enzyme digestion with NcoI and SacI, PCR changing the NcoI site on the HBc-DIII insert to XbaI, sequencing, ligation into geminiviral vector and transformation into an agrobacterium strain. The major impediment to the cloning process was the presence of multiple bands instead of the expected two bands while doing restriction enzyme digests. The troubleshooting process enabled speculating that due to the excess of restriction enzymes in the digestion volume, some of the DNA was not digested completely. Hence, multiple bands were observed. However, sequencing analysis and further cloning process ensured the presence of HBc-DIII insert band (approximately 800bp) in the Gemini vector. Lastly, the construct HBc-DIII in Gemini vector was ensured to be in agrobacterium for further experiments such as agro-infiltration.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Carbohydrates are one of the four main building blocks of life, and are categorized as monosaccharides (sugars), oligosaccharides and polysaccharides. Each sugar can exist in two alternative anomers (in which a hydroxy group at C-1 takes different orientations) and each…
Carbohydrates are one of the four main building blocks of life, and are categorized as monosaccharides (sugars), oligosaccharides and polysaccharides. Each sugar can exist in two alternative anomers (in which a hydroxy group at C-1 takes different orientations) and each pair of sugars can form different epimers (isomers around the stereocentres connecting the sugars). This leads to a vast combinatorial complexity, intractable to mass spectrometry and requiring large amounts of sample for NMR characterization. Combining measurements of collision cross section with mass spectrometry (IM–MS) helps, but many isomers are still difficult to separate. Here, we show that recognition tunnelling (RT) can classify many anomers and epimers via the current fluctuations they produce when captured in a tunnel junction functionalized with recognition molecules. Most importantly, RT is a nanoscale technique utilizing sub-picomole quantities of analyte. If integrated into a nanopore, RT would provide a unique approach to sequencing linear polysaccharides.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Multivalency is an important phenomenon that guides numerous biological interactions. It has been utilized in design of therapeutics and drug candidates. Hence, this study attempts to develop analytical tools to study multivalent interactions and design multivalent ligands for drug delivery…
Multivalency is an important phenomenon that guides numerous biological interactions. It has been utilized in design of therapeutics and drug candidates. Hence, this study attempts to develop analytical tools to study multivalent interactions and design multivalent ligands for drug delivery and therapeutic applications.
Atomic Force Microscopy (AFM) has been envisioned as a means of nanodiagnostics due to its single molecule sensitivity. However, the AFM based recognition imaging lacks a multiplex capacity to detect multiple analytes in a single test. Also there is no user friendly wet chemistry to functionalize AFM tips. Hence, an uncatalyzed Click Chemistry protocol was developed to functionalize AFM tips. For multiplexed recognition imaging, recognition heads based on a C3 symmetrical three arm linker with azide functionalities at its ends were synthesized and the chemistry to attach them to AFM tips was developed, and these recognition heads were used in detecting multiple proteins simultaneously using AFM.
A bis-Angiopeptide-2 conjugate with this three-arm linker was synthesized and this was conjugated with anti-West Nile virus antibody E16 site specifically to target advanced West Nile virus infection in the Central Nervous System. The bis-Angiopeptide-2 conjugate of the antibody shows higher efficacy compared to a linear linker-Angiopeptide-2 conjugate of the antibody in in vitro studies and currently the efficacy of this antibody conjugate in studied in mice. Surface Plasmon Resonance imaging (SPRi) results indicate that the conjugation does not affect the antigen binding activity of the antibody very significantly.
A Y-shaped bisbiotin ligand was also prepared as a small sized antibody mimic. Compared to a monovalent biotin ligand, the y-Bisbiotin can cooperatively form a significantly more stable complex with streptavidin through intramolecular bivalent interactions, which were demonstrated by gel electrophoresis, SPR and AFM. Continuing on these lines, a four-arm linker was synthesized containing three single chain variable fragments (scFv) linked to the scaffold to form a tripod base, which would allow them to concomitantly interact with a trimeric Glycoprotein (GP) spike that has a “chalice” configuration. Meanwhile, a human IgG1 Fc is to be installed on the top of the tetrahedron, exerting effector functions of a monoclonal antibody.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Richard Feynman said “There’s plenty of room at the bottom”. This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful…
Richard Feynman said “There’s plenty of room at the bottom”. This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with surface plasmon resonance. In present, the RT technique is applying to chip type sequencing device onto solid-state nanopore to read out glycosaminoglycans which is ubiquitous to all mammalian cells and controls biological activities.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular…
DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with the recognition molecules, the analyte molecules generate stochastic signal trains accommodating their “electronic fingerprints”. Signal features are used to detect the molecules using a machine learning algorithm and different molecules can be identified with significantly high accuracy. This, in turn, paves the way for rapid, economical nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing (NGS) techniques.
To read DNA nucleotides with high accuracy in an STM tunnel junction a series of nitrogen-based heterocycles were designed and examined to check their capabilities to interact with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole proved to be best among them showing DNA nucleotide classification accuracy close to 99%. Also, Imidazole reader can read an abasic monophosphate (AP), a product from depurination or depyrimidination that occurs 10,000 times per human cell per day.
In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene (Pyrene reader) based on stacking interactions, which should be more specific to the canonical DNA nucleosides. In addition, Pyrene reader showed higher DNA base-calling accuracy compare to Imidazole reader, the workhorse in our previous projects. In my other projects, various amino acids and RNA nucleoside monophosphates were also classified with significantly high accuracy using RT. Twenty naturally occurring amino acids and various RNA nucleosides (four canonical and two modified) were successfully identified. Thus, we envision nanopore sequencing biomolecules using Recognition Tunneling (RT) that should provide comprehensive betterment over current technologies in terms of time, chemical and instrumental cost and capability of de novo sequencing.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
For reading DNA bases more accurately, a series of nitrogen-containing aromatic heterocycles have been designed and synthesized as candidates of universal reader to interact with all naturally occurring DNA nucleobases by hydrogen bonding interaction and eventually is used to read…
For reading DNA bases more accurately, a series of nitrogen-containing aromatic heterocycles have been designed and synthesized as candidates of universal reader to interact with all naturally occurring DNA nucleobases by hydrogen bonding interaction and eventually is used to read DNA by recognition tunneling. These recognition molecules include 6-mercapto-1H-benzo[d]imidazole-2-carboxamide, 5-(2-mercaptoethyl)-1H-imidazole-2-carboxamide, 5-(2-mercaptoethyl)-4H-1,2,4-traizole-3-carboxamide and 1-(2-mercaptoethyl)-1H-pyrrole-3-carboxamide. Their formation of hydrogen bonding complexes with nucleobases was studied and association constants were measured by proton NMR titration experiments in deuterated chloroform at room temperature. To do so, the mercaptoethyl chain or thiol group of these reading molecules was replaced or protected with the more lipophilic group to increase the solubility of these candidates in CDCl3. The 3' and 5' hydroxyl groups of deoxyadenosine (dA), deoxyguanosine (dG), deoxycytidine (dC) and thymidine (dT) were protected with tert-butyldimethylsilyl (TBDMS) to eliminate hydrogen bonding competition from the hydroxyl protons with these candidates as well as to increase the solubility of the nucleosides in CDCl3 for NMR titration experiment. Benzimidazole and imidazole containing readers exhibited the strongest H-bonding affinity towards DNA bases where pyrrole containing reader showed the weakest affinity. In all cases, dG revealed the strongest affinity towards the readers while dA showed the least.
The molecular complex formation in aqueous solution was studied by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry. The formation of both 1:1 and 2:1 complexes between one or two reading molecules and a DNA nucleotide were observed by ESI mass. A series of amino acids and carbohydrates were also examined by mass spectrometry to show the formation of non-covalent complexes with imidazole reader in aqueous solution. The experimental results were compared by calculating energies of ground state conformers of individual molecules and their complexes using computer modeling study by DFT calculations. These studies give insights into the molecular interactions that happen in a nanogap during recognition tunneling experiments.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Biomolecules can easily recognize its corresponding partner and get bound to it, resulting in controlling various processes (immune system, inter or intracellular signaling) in biology and physiology. Bonding between two partners can be a result of electrostatic, hydrophobic interactions or…
Biomolecules can easily recognize its corresponding partner and get bound to it, resulting in controlling various processes (immune system, inter or intracellular signaling) in biology and physiology. Bonding between two partners can be a result of electrostatic, hydrophobic interactions or shape complementarity. It is of great importance to study these kinds of biomolecular interactions to have a detailed knowledge of above mentioned physiological processes. These studies can also open avenues for other aspects of science such as drug development. Discussed in the first part of Chapter 1 are the biotin-streptavidin biomolecular interaction studies by atomic force microscopy (AFM) and surface plasmon resonance (SPR) instrument. Also, the basic working principle of AFM and SPR has been discussed.
The second part of Chapter 1 is discussed about site-specific chemical modification of peptides and proteins. Proteins have been used to generate therapeutic materials, proteins-based biomaterials. To achieve all these properties in protein there is a need for site-specific protein modification.
To be able to successfully monitor biomolecular interaction using AFM there is a need for organic linker molecule which helps one of the investigating molecules to get attached to the AFM tip. Most of the linker molecules available are capable of investigating one type of interaction at a time. Therefore, it is significant to have linker molecule which can monitor multiple interactions (same or different type) at the same time. Further, these linker molecules are modified so that biomolecular interactions can also be monitored using SPR instrument. Described in Chapter 2 are the synthesis of organic linker molecules and their use to study biomolecular interaction through AFM and SPR.
In Chapter 3, N-terminal chemical modification of peptides and proteins has been discussed. Further, modified peptides are attached to DNA thread for their translocation through the solid-state nanopore to identify them. Synthesis of various peptide-DNA conjugates and their nanopore studies have been discussed in this chapter.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis…
Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis focuses on the study of first and crucial compartment of the third generation sequencing technique, the capture and translocation of biopolymers, and discuss the advantages and obstacles of two different nanofluidic pathways, nanotubes and nanopores for single molecule capturing and translocation. Carbon nanotubes with its constrained structure, the frictionless inner wall and strong electroosmotic flow, are promising materials for linearly threading DNA and other biopolymers for sequencing. Solid state nanopore on the other hand, is a robust chemical, thermal and mechanical stable nanofluidic device, which has a high capturing rate and, to some extent, good controllable threading ability for DNA and other biomolecules. These two different but similar nanofluidic pathways both provide a good preparation of analyte molecules for the sequencing purpose. In addition, more and more research interests have move onto peptide chains and protein sensing. For proteome is better and more direct indicators for human health, peptide chains and protein sensing have a much wider range of applications on bio-medicine, disease early diagnoses, and etc. A universal peptide chain nanopore sensing technique with universal chemical modification of peptides is discussed in this thesis as well, which unifies the nanopore capturing process for vast varieties of peptides. Obstacles of these nanofluidic pathways are also discussed. In the end of this thesis, a proposal of integration of solid state nanopore and fixed-gap recognition tunneling sequencing technique for a more accurate DNA and peptide readout is discussed, together with some early study work, which gives a new direction for nanopore based sequencing.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Deoxyribonucleic acid (DNA) has emerged as an excellent molecular building block for nanoconstruction in addition to its biological role of preserving genetic information. Its unique features such as predictable conformation and programmable intra- and inter-molecular Watson-Crick base pairing interactions make…
Deoxyribonucleic acid (DNA) has emerged as an excellent molecular building block for nanoconstruction in addition to its biological role of preserving genetic information. Its unique features such as predictable conformation and programmable intra- and inter-molecular Watson-Crick base pairing interactions make it a remarkable engineering material. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in directed material assembly, structural biology, biocatalysis, DNA
computing, nano-robotics, disease diagnosis, and drug delivery.
This dissertation focuses on developing the structural design rules for "static" DNA nano-architectures with increasing complexity. By using a modular self-assembly method, Archimedean tilings were achieved by association of different DNA motifs with designed arm lengths and inter-tile sticky end interactions. By employing DNA origami method, a new set of design rules was created to allow the scaffolds to travel in arbitrary directions in a designed geometry without local symmetry restrictions. Sophisticated wireframe structures of higher-order complexity were designed and constructed successfully. This dissertation also presents the use of "dynamic" DNA nanotechnology to construct DNA origami nanostructures with programmed reconfigurations.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)