Non-Traditional Biochemistry: Disordered Proteins and Educational Pathways

193587-Thumbnail Image.png
Description
Since understanding the nature of proteins, it has been a long held belief that protein sequence dictated structure which then determined function. As such, all proteins contained structure and those that did not must not serve a purpose. For the

Since understanding the nature of proteins, it has been a long held belief that protein sequence dictated structure which then determined function. As such, all proteins contained structure and those that did not must not serve a purpose. For the last 25 years, scientists have begun to understand that disordered proteins, lacking structure, did not lack function. Their unique ability to undergo liquid-liquid phase separation served a cellular purpose, most involving nucleic acids. As more is uncovered, these unique proteins are being used to build new systems. Phase separated disordered proteins were used to design a functional organelle using the enzyme horseradish peroxidase and its chromatic substrate ABTS. Upon doing so, it was discovered that disordered proteins are highly susceptible to chemical modification through radical reactions with tyrosine. The increased frequency of tyrosine in disordered proteins provides multiple sites of conjugation by the ABTS radical and other substrates. These modifications then alter the physical properties of the proteins. The phase separated system was also incorporated with shell proteins from bacterial microcompartments in an attempt to limit access to the droplets. Through expression with truncations of the disordered sequence, shell proteins were able to interact with the droplets. Despite the appearance of complete coatings, they were found to be permeable to their surroundings, though much more stable than uncoated droplets. Just as disordered proteins are considered outside the traditional structures, so too are many students entering higher education. Non-traditional students are becoming more prevalent in the undergraduate population, though they are woefully underrepresented in the natural sciences. The benefits these students bring to their programs is highlighted and the circumstances that drive them away from STEM is explored. Non-traditional students contribute to the diversity of the scientific population, though many pursue education in non-STEM fields. To support these students, focus is put on andragogy (the teaching of adults), rather than pedagogy (the teaching of children). Non-traditional students face isolation and discrimination that is not being addressed by higher education institutions, hindering their ability to succeed. Through infrastructure designed for adult learners, STEM fields can be diversified in non-traditional ways.
Date Created
2024
Agent

DNA-templated Chemical Synthesis of Proteins and Polypeptides

191500-Thumbnail Image.png
Description
Proteins are among the important macromolecules in living systems, with diverse biological functions and properties that make them greatly interesting to study in both structure and function. The chemical synthesis of proteins allows researchers to incorporate a wide variety of

Proteins are among the important macromolecules in living systems, with diverse biological functions and properties that make them greatly interesting to study in both structure and function. The chemical synthesis of proteins allows researchers to incorporate a wide variety of post-translation modifications that can diversify protein functions. It also allows the incorporation of many noncanonical amino acids that enable the study of protein structure and function, as well as the control of their activity in living cells. The work presented in this dissertation focuses on two DNA-templated chemical synthesis approaches for the synthesis of proteins: i) DNA-templated native chemical ligation (NCL), and ii) DNA-templated click chemistry. NCL and its extended version has been used as a powerful tool to obtain proteins; however, it still struggles to make longer proteins due to aggregation and poor yield. To address these issues, a DNA-templated approach is being developed where two peptide fragments are brought into proximity by an oligonucleotide to facilitate the NCL reaction. The sequential ligation of the peptide fragments will result in full-length proteins with increased yield and improved solubility. This research involves synthesis of small molecule auxiliaries, thioester peptides, DNA-peptide conjugates, and ligation of peptides through NCL. This method has the potential to be applied to synthesize large hydrophobic proteins. A DNA-templated click chemistry method was also reported where duplex DNA was utilized as a template for enhancing the copper click reaction between peptide fragments into functional mini-proteins. As a proof of principle, peptide fragments were synthesized with click functional groups and conjugated with distinct DNA handles through a disulfide exchange bioconjugation reaction. The DNA-peptide conjugates were assembled with the template to bring the two peptides into proximity and enhance the effective molarities of the functional groups. The peptides were coupled efficiently using a copper click reaction. The designed DNA-templated method is being implemented to synthesize a designed mini-protein (called LCB1), which can bind tightly to the spike protein of SARS-CoV-2 and inhibit its interaction with the human angiotensin-converting enzyme 2 (ACE2) receptor. This method allows researchers to introduce multiple non-natural amino acids in the protein and has the potential to extend to larger proteins, synthetic polymers, and DNA-peptide biomaterials.
Date Created
2024
Agent

Computational Methods for Modifying Enzyme Specificity: from Molding the Active Site to Allosteric Considerations

190846-Thumbnail Image.png
Description
Enzymes keep life nicely humming along by catalyzing important reactions at relevant timescales. Despite their immediate importance, how enzymes recognize and bind their substrate in a sea of cytosolic small molecules, carry out the reaction, and release their product in

Enzymes keep life nicely humming along by catalyzing important reactions at relevant timescales. Despite their immediate importance, how enzymes recognize and bind their substrate in a sea of cytosolic small molecules, carry out the reaction, and release their product in microseconds is still relatively opaque. Methods to elucidate enzyme substrate specificity indicate that the shape of the active site and the amino acid residues therein play a major role. However, lessons from Directed Evolution experiments reveal the importance of residues far from the active site in modulating substrate specificity. Enzymes are dynamic macromolecules composed of networks of interactions integrating the active site, where the chemistry occurs, to the rest of the protein. The objective of this work is to develop computational methods to modify enzyme ligand specificity, either through molding the active site to accommodate a novel ligand, or by identifying distal mutations that can allosterically alter specificity. To this end, two homologues in the β-lactamase family of enzymes, TEM-1, and an ancestrally reconstructed variant, GNCA, were studied to identify whether the modulation of position-specific distal-residue flexibility could modify ligand specificity. RosettaDesign was used to create TEM-1 variants with altered dynamic patterns. Experimental characterization of ten designed proteins indicated that mutations to residues surrounding rigid, highly coupled residues substantially affected both enzymatic activity and stability. In contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Five of the TEM-1 variants were crystallized to see if the changes in function observed were due to architectural changes to the active site. In a second project, a computational platform using RosettaDesign was developed to remodel the firefly luciferase active site to accommodate novel luciferins. This platform resulted in the development of five luciferin-luciferase pairs with red-shifted emission maxima, ready for multicomponent bioluminescent imaging applications in tissues. Although the projects from this work focus on two classes of proteins, they provide insight into the structure-function relationship of ligand specificity in enzymes and are broadly applicable to other systems.
Date Created
2023
Agent

Evolutionary Guided Molecular Dynamics Driven Protein Design

189261-Thumbnail Image.png
Description
Natures hardworking machines, proteins, are dynamic beings. Comprehending the role of dynamics in mediating allosteric effects is paramount to unraveling the intricate mechanisms underlying protein function and devising effective protein design strategies. Thus, the essential objective of this thesis is

Natures hardworking machines, proteins, are dynamic beings. Comprehending the role of dynamics in mediating allosteric effects is paramount to unraveling the intricate mechanisms underlying protein function and devising effective protein design strategies. Thus, the essential objective of this thesis is to elucidate ways to use protein dynamics based tools integrated with evolution and docking techniques to investigate the effect of distal allosteric mutations on protein function and further rationally design proteins. To this end, I first employed molecular dynamics (MD) simulations, Dynamic Flexibility Index (DFI) and Dynamic Coupling Index (DCI) on PICK1 PDZ, Butyrylcholinesterase (BChE), and Dihydrofolate reductase (DHFR) to uncover how these proteins utilize allostery to tune activity. Moreover, a new classification technique (“Controller”/“Controlled”) based on asymmetry in dynamic coupling is developed and applied to DHFR to elucidate the effect of allosteric mutations on enzyme activity. Subsequently, an MD driven dynamics design approach is applied on TEM-1 β-lactamase to tailor its activity against β-lactam antibiotics. New variants were created, and using a novel analytical approach called "dynamic distance analysis" (DDA) the degree of dynamic similarity between these variants were quantified. The experimentally confirmed results of these studies showed that the implementation of MD driven dynamics design holds significant potential for generating variants that can effectively modulate activity and stability. Finally, I introduced an evolutionary guided molecular dynamics driven protein design approach, integrated co-evolution and dynamic coupling (ICDC), to identify distal residues that modulate binding site dynamics through allosteric mechanisms. After validating the accuracy of ICDC with a complete mutational data set of β-lactamase, I applied it to Cyanovirin-N (CV-N) to identify allosteric positions and mutations that can modulate binding affinity. To further investigate the impact of mutations on the identified allosteric sites, I subjected putative mutants to binding analysis using Adaptive BP-Dock. Experimental validation of the computational predictions demonstrated the efficacy of integrating MD, DFI, DCI, and evolution to guide protein design. Ultimately, the research presented in this thesis demonstrates the effectiveness of using evolutionary guided molecular dynamics driven design alongside protein dynamics based tools to examine the significance of allosteric interactions and their influence on protein function.
Date Created
2023
Agent

Stabilizing DNA Nanostructures via Oligolysine-Based Polymers

Description

DNA nanotechnology, the self-assembly of DNA into 2D and 3D nanoscale structures facilitated via Watson and Crick base pairing, provides alternative solutions for biomedical challenges, especially for therapeutic cargo delivery, because it is easily fabricated, exhibits low cytotoxicity, and high

DNA nanotechnology, the self-assembly of DNA into 2D and 3D nanoscale structures facilitated via Watson and Crick base pairing, provides alternative solutions for biomedical challenges, especially for therapeutic cargo delivery, because it is easily fabricated, exhibits low cytotoxicity, and high biocompatibility. However, the stability of these DNA nanostructures (DN) under cellular environment presents an issue due to their requirements for high salt conditions and susceptibility to nuclease degradation. Furthermore, DNs are typically trapped in endolysosomal compartments rather than the cytosol, where most of their cargo must be delivered. Many attempts to mitigate the stability issue have been made in recent years. Previously, our lab designed an endosomal escape peptide, Aurein 1.2 (denoted “EE, for endosomal escape)”, combined with a decalysine sequence (K10) proven to electrostatically adhere to and protect DNs under cell culture conditions. Unfortunately, this molecule, termed K10-EE, only resulted in endosomal escape in absence of serum due to formation of a protein corona on the surface of the coated DN.6 Therefore, we now propose to electrostatically coat the DN with a polymer composed of decalysine (K10), polyethylene glycol (PEG, which demonstrates antibiofouling properties), and peptide EE: K10- PEG1k-EE. Described herein are the attempted synthetic schemes of K10-PEG1k-EE, the successful synthesis of alternative products, K10-(EK)5 and K10-(PEG12)2-EE, and their resulting impacts on DN stability under biological conditions. Coating of the K10-(EK)5 with a DNA barrel origami demonstrated inefficient stabilizing capability in serum. Future studies include testing K10- (PEG12)2-EE protection for a variety of nucleic acid-based structures.

Date Created
2023-05
Agent

An Investigation into the LLPS Effects of Radical Interactions on Intrinsically Disordered Proteins

Description

This qualitative study sought to investigate the potential reaction between the 3,3',5,5'-tetramethylbenzidine (TMB) radical and LAF-1 RGG, the N-terminus domain of an RNA helicase which functions as a coacervating intrinsically disordered protein. The study was performed by adding horseradish peroxidase

This qualitative study sought to investigate the potential reaction between the 3,3',5,5'-tetramethylbenzidine (TMB) radical and LAF-1 RGG, the N-terminus domain of an RNA helicase which functions as a coacervating intrinsically disordered protein. The study was performed by adding horseradish peroxidase to a solution containing TMB and either LAF-1 or tyrosine in various concentrations, and monitoring the output through UV-Vis spectroscopy. The reacted species was also analyzed via MALDI-TOF mass spectrometry. UV-Vis spectroscopic monitoring showed that in the presence of LAF-1 or tyrosine, the reaction between HRP and TMB occurred more quickly than the control, as well as in the highest concentration of LAF-1, the evolution of a peak at 482 nm. The analysis through MALDI-TOF spectrometry showed the development of a second peak likely due to the reaction between LAF-1 and TMB, as the Δ between the peaks is 229 Da and the size of the TMB species is 240 Da.

Date Created
2022-12
Agent

Syntheses of Non-Canonical Amino Acids Containing Stilbene

166075-Thumbnail Image.png
Description

Non-canonical amino acids (NCAAs) can be used in protein chemistry to determine their structures. A common method for imaging proteins is cryo-electron microscopy (cryo-EM) which is ideal for imaging proteins that cannot be obtained in large quantities. Proteins with indistinguishable

Non-canonical amino acids (NCAAs) can be used in protein chemistry to determine their structures. A common method for imaging proteins is cryo-electron microscopy (cryo-EM) which is ideal for imaging proteins that cannot be obtained in large quantities. Proteins with indistinguishable features are difficult to image using this method due to the large size requirements, therefore antibodies designed specifically for binding these proteins have been utilized to better identify the proteins. By using an existing antibody that binds to stilbene, NCAAs containing this molecule can be used as a linker between proteins and an antibody. Stilbene containing amino acids can be integrated into proteins to make this process more access able. In this paper, synthesis methods for various NCAAs containing stilbene were proposed. The resulting successfully synthesized NCAAs were E)-N6-(5-oxo-5-((4-styrylphenyl) amino) pentanoyl) lysine, (R,E)-2-amino-3-(5-oxo-5-((4-styrylphenyl)amino)pentanamido)propanoic acid, (E)-2-amino-5-(5-oxo-5-((4-styrylphenyl) amino) pentanamido) pentanoic acid. A synthesis for three more shorter amino acids, (R,E)-2-amino-3-(3-oxo-3-((4-styrylphenyl) amino) propanamido) propanoic acid, (E)-2-amino-5-(3-oxo-3-((4-styrylphenyl) amino) propanamido) pentanoic acid, and (E)-N6-(3-oxo-3-((4-styrylphenyl) amino) propanoyl) lysine, is also proposed.

Date Created
2022-05
Agent

Introduction of the Molybdenum Cofactor Biosynthesis Pathway to Chlamydomonas reinhardtii for Future Use by Formate Dehydrogenase

165221-Thumbnail Image.png
Description
With needs for carbon sequestration and sustainable chemical feedstocks increasing formate stands out as a real possibility in addressing these growing problems. One of the principal issues with positioning formate as the central compound of a bioeconomy is establishing a

With needs for carbon sequestration and sustainable chemical feedstocks increasing formate stands out as a real possibility in addressing these growing problems. One of the principal issues with positioning formate as the central compound of a bioeconomy is establishing a sustainable and reliable method for producing it. The goal of this project was to take the first steps towards engineering a formate production cell factory in Chlamydomonas reinhardtii by introducing the biosynthetic pathway necessary for the creation of molybdenum cofactor which would later be used as an integral part of the function of a formate dehydrogenase enzyme capable of reducing carbon dioxide to make formate. I was able to get some seemingly successful transformants but unable to confidently confirm whether or not these transformants hardboard the molybdenum cofactor synthesis genes.
Date Created
2022-05
Agent

Exploring the Functional and Structural Topology of Synthetic DNA

161707-Thumbnail Image.png
Description
Exerting bias on a diverse pool of random short single stranded oligonucleotides (ODNs) by favoring binding to a specific target has led to the identification of countless high affinity aptamers with specificity to a single target. By exerting this

Exerting bias on a diverse pool of random short single stranded oligonucleotides (ODNs) by favoring binding to a specific target has led to the identification of countless high affinity aptamers with specificity to a single target. By exerting this same bias without prior knowledge of targets generates libraries to capture the complex network of molecular interactions presented in various biological states such as disease or cancer. Aptamers and enriched libraries have vast applications in bio-sensing, therapeutics, targeted drug delivery, biomarker discovery, and assay development. Here I describe a novel method of computational biophysical characterization of molecular interactions between a single aptamer and its cognate target as well as an alternative to next generation sequencing (NGS) as a readout for a SELEX-based assay. I demonstrate the capability of an artificial neural network (ANN) trained on the results of screening an aptamer against a random sampling of a combinatorial library of short synthetic 11mer peptides to accurately predict the binding intensities of that aptamer to the remainder of the combinatorial space originally sampled. This machine learned comprehensive non-linear relationship between amino acid sequence and aptamer binding to synthetic peptides can also make biologically relevant predictions for probable molecular interactions between the aptamer and its cognate target. Results of SELEX-based assays are determined by quantifying the presence and frequency of informative species after probing patient specimen. Here I show the potential of DNA microarrays to simultaneously monitor a pool of informative sequences within a diverse library with similar variability and reproducibility as NGS.
Date Created
2021
Agent

Mapping the Sequence-Structure-Function Paradigm by Intrinsic Properties of Anisotropic Networks

161669-Thumbnail Image.png
Description
Proteins are the machines of living systems that carry out a diverse set of essential biochemical functions. Furthermore, the diversity of their functions has grown overtime via molecular evolution. This thesis aims to explore fundamental questions in protein science regarding

Proteins are the machines of living systems that carry out a diverse set of essential biochemical functions. Furthermore, the diversity of their functions has grown overtime via molecular evolution. This thesis aims to explore fundamental questions in protein science regarding the mechanisms of protein evolution particularly addressing how substitutions in sequence modulate function through structure and structural dynamics. In the work presented here, the first goal is to develop a set of tools which connect the sequence-structure relationship which are implemented in two major projects of protein structural refinement and protein structural design. Both of these two works highlight the importance of capturing important pairwise interactions within a given protein system.The second major goal of this work is to understand how sequence and structural dynamics give rise to protein function, and, importantly, how Nature can utilize allostery to evolve towards a new function. Here I employ several in-house and novel computational tools to shed light onto the mechanisms of allostery, and, particularly dynamic allostery in the absence of structural rearrangements. This analysis is applied to several different protein systems including Pin1, LacI, CoV-1 and CoV-2 and TEM-1. I show that the dynamics of protein systems may be altered fundamentally by distal perturbations such as ligand binding or point mutations. These peturbations lead to change in local interactions which cascade within the 3-D network of interaction of a protein and give rise to flexibility changes of distal sites, particularly those of functional/active residues positions thereby altering the protein function. This networking picture of the protein is further explored through asymmetric dynamic coupling which shows to be a marker of allosteric interactions between distal residue pairs. Within the networking picture, the concept of sequence context dependence upon mutation becomes critical in understanding the functional outcome of these mutations. Here I design a computational tool, EpiScore, which is able to capture these effects and correlate them to measured experimental epistasis in two protein systems, dihydrofolate reductase (DHFR) and TEM-1. Ultimately, the work provided in this thesis shows that both allostery and epistasis may be considered, and accurately modeled, as intrinsic properties of anisotropic networks.
Date Created
2021
Agent