Computational Methods for Modifying Enzyme Specificity: from Molding the Active Site to Allosteric Considerations

190846-Thumbnail Image.png
Description
Enzymes keep life nicely humming along by catalyzing important reactions at relevant timescales. Despite their immediate importance, how enzymes recognize and bind their substrate in a sea of cytosolic small molecules, carry out the reaction, and release their product in

Enzymes keep life nicely humming along by catalyzing important reactions at relevant timescales. Despite their immediate importance, how enzymes recognize and bind their substrate in a sea of cytosolic small molecules, carry out the reaction, and release their product in microseconds is still relatively opaque. Methods to elucidate enzyme substrate specificity indicate that the shape of the active site and the amino acid residues therein play a major role. However, lessons from Directed Evolution experiments reveal the importance of residues far from the active site in modulating substrate specificity. Enzymes are dynamic macromolecules composed of networks of interactions integrating the active site, where the chemistry occurs, to the rest of the protein. The objective of this work is to develop computational methods to modify enzyme ligand specificity, either through molding the active site to accommodate a novel ligand, or by identifying distal mutations that can allosterically alter specificity. To this end, two homologues in the β-lactamase family of enzymes, TEM-1, and an ancestrally reconstructed variant, GNCA, were studied to identify whether the modulation of position-specific distal-residue flexibility could modify ligand specificity. RosettaDesign was used to create TEM-1 variants with altered dynamic patterns. Experimental characterization of ten designed proteins indicated that mutations to residues surrounding rigid, highly coupled residues substantially affected both enzymatic activity and stability. In contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Five of the TEM-1 variants were crystallized to see if the changes in function observed were due to architectural changes to the active site. In a second project, a computational platform using RosettaDesign was developed to remodel the firefly luciferase active site to accommodate novel luciferins. This platform resulted in the development of five luciferin-luciferase pairs with red-shifted emission maxima, ready for multicomponent bioluminescent imaging applications in tissues. Although the projects from this work focus on two classes of proteins, they provide insight into the structure-function relationship of ligand specificity in enzymes and are broadly applicable to other systems.
Date Created
2023
Agent

Determination of Glycan Urinary Biomarkers in the Urine of COVID-19 Positive and Negative Individuals Using Bottom-up Glycomics

189271-Thumbnail Image.png
Description
Based on past studies, urinary glycan biomarkers have the potential to be used as diagnostic and prognostic markers for treatment purposes. This study brought into play the bottom-up glycan node analysis approach to analyze 39 urine samples from COVID-19 positive

Based on past studies, urinary glycan biomarkers have the potential to be used as diagnostic and prognostic markers for treatment purposes. This study brought into play the bottom-up glycan node analysis approach to analyze 39 urine samples from COVID-19 positive and negative individuals using gas chromatography-mass spectrometry (GC-MS) to determine potential urinary glycan biomarkers of COVID-19. Glycan node analysis involves chemically breaking down glycans in whole biospecimens in a way that conserves both monosaccharide identity and linkage information that facilitates the capture of unique glycan features as single analytical signals. Following data acquisition, the student t-test was done on all the nodes, but only four prominent nodes (t-Deoxyhexopyranose, 2,3-Gal, t-GlcNAc, and 3,6-GalNAc with respective p-values 0.03027, 0.03973, 0.0224, and 0.0004) were below the threshold p-value of 0.05 and showed some differences in the mean between both groups. To eliminate the probability of having false positive p-values, Bonferroni correction was done on the four nodes but only the 3,6-GalNAc node emerged as the only node that was below the newly adjusted p-value. Because sample analyses were done in batches, the Kruskal Wallis test was done to know if the batch effect was responsible for the observed lower relative concentration of 3,6-GalNAc in COVID-19 positive patients than in negative patients. A receiver operating characteristic curve (ROC) was plotted for the 3,6-GalNAc node and the area under the curve (AUC) was calculated to be 0.84, casting the 3,6-GalNAc node was a potential biomarker of COVID-19. 3,6-GalNAc largely arises from branched O-glycan core structures, which are abundant in mucin glycoproteins that line the urogenital tract. Lowered relative concentrations of 3,6-GalNAc in the urine of COVID-19 positive patients may be explained by compromised kidney function that allows non-mucinous glycoproteins from the blood to contribute a greater proportion of the relative glycan node signals than in COVID-19 negative patients. Future prospective clinical studies will be needed to validate both the biomarker findings and this hypothesis.
Date Created
2023
Agent

The Study of Cyanobacterial Bicarbonate Transporters and Applications of Microcrystal Electron Diffraction

161827-Thumbnail Image.png
Description
Cyanobacteria contribute to more than a quarter of the primary carbon fixation worldwide. They have evolved a CO2 concentrating mechanism (CCM) to enhance photosynthesis because inorganic carbon species are limited in the aqueous environment. Bicarbonate transporters SbtA and BicA are

Cyanobacteria contribute to more than a quarter of the primary carbon fixation worldwide. They have evolved a CO2 concentrating mechanism (CCM) to enhance photosynthesis because inorganic carbon species are limited in the aqueous environment. Bicarbonate transporters SbtA and BicA are active components of CCM, and the determination of their structures is important to investigate the bicarbonate transport mechanisms. E. coli was selected as the expression host for these bicarbonate transporters, and optimization of expression and protein purification conditions was performed. Single particle electron cryomicroscopy (cryo-EM) or protein crystallography was carried out for each transporter. In this work, SbtA, BicA and SbtB, a regulator protein of SbtA, were heterologously expressed in E. coli and purified for structural studies. SbtB was highly expressed and two different crystal structures of SbtB were resolved at 2.01 Å and 1.8 Å, showing a trimer and dimer in the asymmetric unit, respectively. The yields of SbtA and BicA after purification reached 0.1 ± 0.04 and 6.5 ± 1.0 mg per liter culture, respectively. Single particle analysis showed a trimeric conformation of purified SbtA and promising interaction between SbtA and SbtB, where the bound SbtB was also possibly trimeric. For some crystallization experiments of these transporters, lipidic cubic phase (LCP) was used. In the case of LCP, often times the crystals grown are generally too tiny to withstand radiation damage from the X-ray beam during an X-ray diffraction experiment. As an alternative approach for this research, the microcrystal electron diffraction (MicroED) method was applied to the LCP-laden crystals because it is a powerful cryo-EM method for high-resolution structure determination from protein microcrystals. The new technique is termed as LCP-MicroED, however, prior to applying LCP-MicroED to the bicarbonate transporters, methods needed to be developed for LCP-MicroED. Therefore the model protein Proteinase K was used and its structure was determined to 2.0 Å by MicroED. Additionally, electron diffraction data from cholesterol and human A2A adenosine receptor crystals were collected at 1.0 Å and 4.5 Å using LCP-MicroED, respectively. Other applications of MicroED to different samples are also discussed.
Date Created
2021
Agent

Engineering Metalloproteins for Solar Driven Hydrogen Production

161254-Thumbnail Image.png
Description
Hydrogenase enzymes capable of catalyzing proton reduction to produce H2 have generated a considerable interest due to increasing motivation in finding sustainable carbon free energy sources. A considerable amount of research has been focused on producing synthetic structures mimicking the

Hydrogenase enzymes capable of catalyzing proton reduction to produce H2 have generated a considerable interest due to increasing motivation in finding sustainable carbon free energy sources. A considerable amount of research has been focused on producing synthetic structures mimicking the hydrogenase catalytic site, but the activity seen in hydrogenase enzymes in aqueous near neutral pH has yet to be replicated. It is now clear that the protein structure surrounding the H-cluster enables the high activity by fine tuning characteristics of the catalyst, but the structure and complexity of hydrogenase enzymes makes it difficult to predict exactly how the secondary coordination sphere affects catalysis. This work looks at incorporating both synthetic molecular catalysts and hydrogenase mimics into peptide scaffolds to improve the activity for photo-driven H2 production in aqueous solutions. The first chapter of this dissertation shows a de novo heme binding peptide improving the activity of cobalt protoporphyrin IX (CoPPIX) upon coordination inside a four-helix bundle. The peptide bound CoPPIX exhibited a 5.5-fold increase in anaerobic and an 8.3-fold increase in aerobic activity compared to free CoPPIX, while also showing dramatic increases to stability and solubility. In the second chapter, this work is expanded by using a randomly mutated cytochrome b562 library to identify beneficial attributes for downstream implementation of an ideal coordination site. A high-throughput assay was developed to measure H2 production using WO3/Pd deposited on a glass plate for a colorimetric first-pass screen. This assay successfully measured H2 production from CoPPIX bound cytochrome b562 in the periplasm of cells and identified a possible mutant showing 70% more H2 production compared to the wildtype. The third chapter incorporated a hydrogenase mimic into a four-helix bundle using a semi-synthetic strategy yielding a 3-fold increase in activity due to catalyst encapsulation. The method created will allow for easy modifications to the synthetic catalyst or peptide sequence in future work. The systems developed in this work were designed to facilitate the identification and implementation of beneficial characteristics for future development of an optimal secondary coordination sphere for a peptide bound molecular catalyst.
Date Created
2021
Agent

Protein Design and Engineering Using the Fluorescent Non-canonical Amino Acid L-(7-hydroxycoumarin-4-yl)ethylglycine

158819-Thumbnail Image.png
Description
Proteins are, arguably, the most complicated molecular machines found in nature. From the receptor proteins that decorate the exterior of cell membranes to enzymes that catalyze the slowest of chemical reactions, proteins perform a wide variety of essential biological functions.

Proteins are, arguably, the most complicated molecular machines found in nature. From the receptor proteins that decorate the exterior of cell membranes to enzymes that catalyze the slowest of chemical reactions, proteins perform a wide variety of essential biological functions. A reductionist view of proteins as a macromolecular group, however, may hold that they simply interact with other chemical species. Notably, proteins interact with other proteins, other biological macromolecules, small molecules, and ions. This in turn makes proteins uniquely qualified for use technological use as sensors of said chemical species (biosensors). Several methods have been developed to convert proteins into biosensors. Many of these techniques take advantage of fluorescence spectroscopy because it is a fast, non-invasive, non-destructive and highly sensitive method that also allows for spatiotemporal control. This, however, requires that first a fluorophore be added to a target protein. Several methods for achieving this have been developed from large, genetically encoded autofluorescent protein tags, to labeling with small molecule fluorophores using bioorthogonal chemical handles, to genetically encoded fluorescent non-canonical amino acids (fNCAA). In recent years, the fNCAA, L-(7-hydroxycoumarin-4yl)ethylglycine (7-HCAA) has been used in to develop several types of biosensors.
The dissertation I present here specifically addresses the use of the fNCAA L-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) in protein-based biosensors. I demonstrate 7-HCAA’s ability to act as a Förster resonance energy transfer (FRET) acceptor with tryptophan as the FRET donor in a single protein containing multiple tryptophans. I the describe efforts to elucidate—through both spectroscopic and structural characterization—interactions within a 7-HCAA containing protein that governs 7-HCAA fluorescence. Finally, I present a top-down computational design strategy for incorporating 7-HCAA into proteins that takes advantage of previously described interactions. These reports show the applicability of 7-HCAA and the wider class of fNCAAs as a whole for their use of rationally designed biosensors.
Date Created
2020
Agent

Preliminary Studies on Protein-Aided Nanoparticle Interactions

157797-Thumbnail Image.png
Description
This work aims to characterize protein-nanoparticle interactions through the application of experimental techniques to aid in controlled nanoparticle production for various applications from manufacturing through medical to defense. It includes multiple steps to obtain purified and characterized protein and then

This work aims to characterize protein-nanoparticle interactions through the application of experimental techniques to aid in controlled nanoparticle production for various applications from manufacturing through medical to defense. It includes multiple steps to obtain purified and characterized protein and then the production of nanoparticles using the protein. This application of protein requires extremely pure homogenous solution of the protein that was achieved using numerous protein separation techniques which were experimented with. Crystallization conditions, protein separation methods and protein characterization methods were all investigated along with the protein-nanoparticle interaction studies. The main protein of study here is GroEL and the inorganic nanoparticle used is platinum. Some studies on MBP producing gold nanoparticles from an ionic gold precursor were also conducted to get a better perspective on nanoparticle formation. Protein purification methods, crystallization conditions, Car-9 tag testing and protein characterization methods were all investigated along with the focus of this work. It was concluded that more Car9 studies need to be carried out before being used as in the form of a loop in the protein. The nanoparticle experiments were successful and platinum nanoparticles were successfully synthesized using GroEL. The direction of further research in protein-nanoparticle studies are outlined towards the end of the thesis.
Date Created
2019
Agent

Rational metalloprotein design for energy conversion applications

157698-Thumbnail Image.png
Description
Continuing and increasing reliance on fossil fuels to satisfy our population’s energy demands has encouraged the search for renewable carbon-free and carbon-neutral sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one of the objectives of this

Continuing and increasing reliance on fossil fuels to satisfy our population’s energy demands has encouraged the search for renewable carbon-free and carbon-neutral sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one of the objectives of this dissertation was to develop protein-based strategies that can be applied in the production of green fuels. The first project of this dissertation aimed at developing a controllable strategy to incorporate domains with different functions (e. g. catalytic sites, electron transfer modules, light absorbing subunits) into a single multicomponent system. This was accomplished through the rational design of 2,2’-bipyridine modified dimeric peptides that allowed their metal-directed oligomerization by forming tris(bipyridine) complexes, thus resulting in the formation of a hexameric assembly.

Additionally, two different approaches to incorporate non-natural organometallic catalysts into protein matrix are discussed. First, cobalt protoporphyrin IX was incorporated into cytochrome b562 to produce a water-soluble proton and CO2 reduction catalyst that is active upon irradiation in the presence of a photosensitizer. The effect of the porphyrin axial ligands provided by the protein environment has been investigated by introducing mutations into the native scaffold, indicating that catalytic activity of proton reduction is dependent on axial coordination to the porphyrin. It is also shown that effects of the protein environment are not directly transferred when applied to other reactions, such as CO2 reduction.

Inspired by the active site of [FeFe]-hydrogenases, the second approach is based on the stereoselective preparation of a novel amino acid bearing a 1,2-benzenedithiol side chain. This moiety can serve as an anchoring point for the introduction of metal complexes into protein matrices. By doing so, this strategy enables the study of protein interactions with non-natural cofactors and the effects that it may have on catalysis. The work developed herein lays a foundation for furthering the study of the use of proteins as suitable environments for tuning the activity of organometallic catalysts in aqueous conditions, and interfacing these systems with other supporting units into supramolecular assemblies.
Date Created
2019
Agent

INVESTIGATING MECHANISMS OF TRANSIENT RECEPTOR POTENTIAL REGULATION WITH NUCLEAR MAGNETIC RESONANCE AND ROSETTA COMPUTATIONAL BIOLOGY

156855-Thumbnail Image.png
Description
The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli

The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting regulator of TRP channels) is a small

membrane protein that modifies TRPV1 responses to heat and TRPM8 responses to cold.

In this dissertation, the first direct measurements between PIRT and TRPM8 are

quantified with nuclear magnetic resonance and microscale thermophoresis. Using

Rosetta computational biology, TRPM8 is modeled with a regulatory, and functionally

essential, lipid named PIP2. Furthermore, a PIRT ligand screen identified several novel

small molecular binders for PIRT as well a protein named calmodulin. The ligand

screening results implicate PIRT in diverse physiological functions. Additionally, sparse

NMR data and state of the art Rosetta protocols were used to experimentally guide PIRT

structure predictions. Finally, the mechanism of thermosensing from the evolutionarily

conserved sensing domain of TRPV1 was investigated using NMR. The body of work

presented herein advances the understanding of thermosensing and TRP channel function

with TRP channel regulatory implications for PIRT.
Date Created
2018
Agent