Chip-integrated Metasurface Polarimetric Imaging Sensor and Applications

187464-Thumbnail Image.png
Description
Polarization imaging and polarization microscopy is of great interest in industrial inspection, defense, biomedical and clinical research, food safety, etc. An ideal polarization imaging system suitable for versatile applications should be full-Stokes, compact, broadband, fast, and highly accurate within a

Polarization imaging and polarization microscopy is of great interest in industrial inspection, defense, biomedical and clinical research, food safety, etc. An ideal polarization imaging system suitable for versatile applications should be full-Stokes, compact, broadband, fast, and highly accurate within a large operation angle. However, such a polarization imaging system remains elusive among state-of-the-art technology. Recently, flat optics based on metasurfaces have been explored for polarization detection and imaging. Compared with state-of-art, metasurface-based solutions have the advantages of compactness, great design flexibility, and feasibility for on-chip integration. This dissertation reports a dual wavelength (630 to 670nm and 480nm to 520nm) chiral metasurfaces featured with sub-wavelength dimension, extinction ratio over 10 across a broad operation bandwidth (175nm) and efficiency over 60%, which can be used for detection and generation of circular polarization (Chapter 2). This dissertation then reports a chip-integrated full-Stokes polarimetric Complementary metal–oxide–semiconductor (CMOS) imaging sensor based on metasurface polarization filter arrays (MPFA) mentioned above. The sensor has high measurement accuracy of polarization states with an angle of view up to 40°. Calibration and characterization of the device are demonstrated, whereby high polarization states measurement accuracy (measurement error <4%) at incidence angle up to ±20° and full Stokes polarization images of polarized objects are shown. (Chapter 3). A scalable fabrication approach based on nano imprint lithography is demonstrated, with improved fabrication efficiency, lower cost, and higher optical performance up to 10 times compared to EBL process. (Chapter 4). Several polarization imaging applications including a dual-camera full-Stokes underwater polarization navigation system are discussed. Polarization mapping under clear sky and clear water is demonstrated for proof concept. Enhancing contrast of objects through turbid water and polarization images of silver dendrites are also discussed (Chapter 5). Though distinctive in its advantages in rich polarization information, most existing Mueller matrix microscope (MMM) operate at single mode, narrow bandwidth with bulky components. This dissertation reports a compact, dual wavelength, dual mode MMM with satisfactory measurement accuracy (Mueller matrix (MM) measurement error≤ 2.1%) using polarimetric imaging sensor mentioned previously, MM imaging of photonic structures, bio-tissues, etc are demonstrated for proof of concept (Chapter 6).
Date Created
2023
Agent

Nanophotonics for Ultrafast Optical Modulation, Ocean, and Energy Applications

171368-Thumbnail Image.png
Description
Nanophotonics studies the interaction of light with nanoscale devices and nanostructures. This thesis focuses on developing nanoscale devices for optical modulation (saturable absorber and all-optical modulator) and investigating light scattering from nanoparticles for underwater navigation and energy sector application. Saturable

Nanophotonics studies the interaction of light with nanoscale devices and nanostructures. This thesis focuses on developing nanoscale devices for optical modulation (saturable absorber and all-optical modulator) and investigating light scattering from nanoparticles for underwater navigation and energy sector application. Saturable absorbers and all-optical modulators are essential to generate ultrashort high-power laser pulses and high-speed communications. Graphene-based devices are broadband, ultrafast, and compatible with different substrates and fibers. Nevertheless, the required fluence to saturate or modulate the optical signal with graphene is still high to realize low-threshold, compact broadband devices, which are essential for many applications. This dissertation emphasizes that the strong light-matter interaction in graphene-plasmonic hybrid metasurface greatly enhances monolayer graphene’s saturable absorption and optical signal modulation effect while maintaining graphene’s ultrafast carrier dynamics. Furthermore, based on this concept, simulation models and experimental demonstrations are presented in this dissertation to demonstrate both subwavelength (~λ/5 in near-infrared and ~λ/10 in mid-infrared) thick graphene-based saturable absorber (with record-low saturation fluence (~0.1μJ/cm2), and ultrashort recovery time (~60fs) at near-infrared wavelengths) and all-optical modulators ( with 40% reflection modulation at 6.5μm with ~55μJ/cm2 pump fluence and ultrafast relaxation time of ~1ps at 1.56μm with less than 8μJ/cm2 pump fluence). Underwater navigation is essential for various underwater vehicles. However, there is no reliable method for underwater navigation. This dissertation presents a numerical simulation model and algorithm for navigation based on underwater polarization mapping data. With the methods developed, for clear water in the swimming pool, it is possible to achieve a sun position error of 0.35˚ azimuth and 0.03˚ zenith angle, and the corresponding location prediction error is ~23Km. For turbid lake water, a location determination error of ~100Km is achieved. Furthermore, maintenance of heliostat mirrors and receiver tubes is essential for properly operating concentrated solar power (CSP) plants. This dissertation demonstrates a fast and field deployable inspection method to measure the heliostat mirror soiling levels and receiver tube defect detection based on polarization images. Under sunny and clear sky conditions, accurate reflection efficiency (error ~1%) measurement for mirrors with different soiling levels is achieved, and detection of receiver tube defects is demonstrated.
Date Created
2022
Agent

Chip-integrated Plasmonic Optics for Polarization Control and Detection

168405-Thumbnail Image.png
Description
Polarization detection and control techniques play essential roles in various applications, including optical communication, polarization imaging, chemical analysis, target detection, and biomedical diagnosis. Conventional methods for polarization detection and polarization control require bulky optical systems. Flat optics opens a new

Polarization detection and control techniques play essential roles in various applications, including optical communication, polarization imaging, chemical analysis, target detection, and biomedical diagnosis. Conventional methods for polarization detection and polarization control require bulky optical systems. Flat optics opens a new way for ultra-compact, lower-cost devices and systems for polarization detection and control. However, polarization measurement and manipulating devices with high efficiency and accuracy in the mid-infrared (MIR) range remain elusive. This dissertation presented design concepts and experimental demonstrations of full-Stokes parameters detection and polarization generation devices based on chip-integrated plasmonic metasurfaces with high performance and record efficiency. One of the significant challenges for full-Stokes polarization detection is to achieve high-performance circular polarization (CP) filters. The first design presented in this dissertation is based on the direct integration of plasmonic quarter-wave plate (QWP) onto gold nanowire gratings. It is featured with the subwavelength thickness (~500nm) and extinction ratio around 16. The second design is based on the anisotropic thin-film interference between two vertically integrated anisotropic plasmonic metasurfaces. It provides record high efficiency (around 90%) and extinction ratio (>180). These plasmonic CP filters can be used for circular, elliptical, and linear polarization generation at different wavelengths. The maximum degree of circular polarization (DOCP) measured from the sample achieves 0.99998. The proposed CP filters were integrated with nanograting-based linear polarization (LP) filters on the same chip for single-shot polarization detection. Full-Stokes measurements were experimentally demonstrated with high accuracy at the single wavelength using the direct subtraction method and over a broad wavelength range from 3.5 to 4.5mm using the Mueller matrix method. This design concept was later expanded to a pixelized array of polarization filters. A full-Stokes imaging system was experimentally demonstrated based on integrating a metasurface with pixelized polarization filters arrays and an MIR camera.
Date Created
2021
Agent

Food‐Based Edible Electronics

161725-Thumbnail Image.png
Description
A new class of electronic materials from food and foodstuff was developed to form a “toolkit” for edible electronics along with inorganic materials. Electrical components like resistors, capacitors and inductors were fabricated with such materials and tested. Applicable devices such

A new class of electronic materials from food and foodstuff was developed to form a “toolkit” for edible electronics along with inorganic materials. Electrical components like resistors, capacitors and inductors were fabricated with such materials and tested. Applicable devices such as filters, microphones and pH sensors were built with edible materials. Among the applications, a wireless edible pH sensor was optimized in terms of form factor, fabrication process and cost. This dissertation discusses the material sciences of food industry, design and fabrication of electronics and biomedical engineering by demonstrating edible electronic materials, components and devices such as filters, microphones and pH sensors. pH sensors are optimized for two different generations of design and fabrication.
Date Created
2021
Agent

Metasurface-Based Optoelectronic Devices for Polarization Detection and Ultrafast Optical Modulation

158681-Thumbnail Image.png
Description
Optical metasurfaces, i.e. artificially engineered arrays of subwavelength building blocks supporting abrupt and substantial light confinement, was employed to demonstrate a novel generation of devices for circularly polarized detection, full-Stokes polarimetry and all-optical modulation with ultra-compact footprint and chip-integrability.

Optical chirality

Optical metasurfaces, i.e. artificially engineered arrays of subwavelength building blocks supporting abrupt and substantial light confinement, was employed to demonstrate a novel generation of devices for circularly polarized detection, full-Stokes polarimetry and all-optical modulation with ultra-compact footprint and chip-integrability.

Optical chirality is essential for generation, manipulation and detection of circularly polarized light (CPL), thus finds many applications in quantum computing, communication, spectroscopy, biomedical diagnosis, imaging and sensing. Compared to natural chiral materials, chiral metamaterials and metasurfaces enable much stronger chirality on subwavelength scale; therefore, they are ideal for device miniaturization and system integration. However, they are usually associated with low performance due to limited fabrication tolerance and high dissipation mainly caused by plasmonic materials. Here, a bio-inspired submicron-thick chiral metamaterial structure was designed and demonstrated experimentally with high contrast (extinction ratio >35) detection of CPL with different handedness and high efficiency (>80%) of the overall device. Furthermore, integration of left- and right-handed CPL detection units with nanograting linear polarization filters enabled full-Stokes polarimetry of arbitrarily input polarization states with high accuracy and very low insertion loss, all on a submillimeter single chip. These unprecedented highly efficient and high extinction ratio devices pave the way for on-chip polarimetric measurements.

All-optical modulation is widely used for optical interconnects, communication, information processing, and ultrafast spectroscopy. Yet, there’s deficiency of ultrafast, compact and energy-efficient solutions all in one device. Here, all-optical modulation of light in the near- and mid-infrared regimes were experimentally demonstrated based on a graphene-integrated plasmonic nanoantenna array. The remarkable feature of the device design is its simultaneous near-field enhancement for pump and probe (signal) beams, owing to the localized surface plasmon resonance excitation, while preserving the ultrafast photocarrier relaxation in graphene. Hence, a distinct modulation at 1560nm with record-low pump fluence (<8μJ/cm^2) was reported with ~1ps response time. Besides, relying on broadband interaction of graphene with incident light, a first-time demonstration of graphene-based all-optical modulation in mid-infrared spectral region (6-7μm) was reported based on the above double-enhancement design concept. Relying on the tunability of metasurface design, the proposed device can be used for ultrafast optical modulation from near-infrared to terahertz regime.
Date Created
2020
Agent

Nonlinear Integrated Photonics in the Visible Spectrum Based on III-N Material Platform

158511-Thumbnail Image.png
Description
Photonic integrated circuit (PIC) in the visible spectrum opens up new opportunities for frequency metrology, neurophotonics, and quantum technologies. Group III nitride (III-N) compound semiconductor is a new emerging material platform for PIC in visible spectrum. The ultra-wide bandgap of

Photonic integrated circuit (PIC) in the visible spectrum opens up new opportunities for frequency metrology, neurophotonics, and quantum technologies. Group III nitride (III-N) compound semiconductor is a new emerging material platform for PIC in visible spectrum. The ultra-wide bandgap of aluminum nitride (AlN) allows broadband transparency. The high quantum efficiency of indium gallium nitride (InGaN) quantum well is the major enabler for solid-state lighting and provides the opportunities for active photonic integration. Additionally, the two-dimensional electron gas induced by spontaneous and polarization charges within III-N materials exhibit large electron mobility, which is promising for the development of high frequency transistors. Moreover, the noncentrosymmetric crystalline structure gives nonzero second order susceptibility, beneficial for the application of second harmonic generation and entangled photon generation in nonlinear and quantum optical technologies. Despite the promising features of III-N materials, the investigations on the III-N based PICs are still primitive, mainly due to the difficulties in material growth and the lack of knowledge on fundamental material parameters. In this work, firstly, the fundamental nonlinear optical properties of III-N materials will be characterized. Then, the fabrication process flow of III-N materials will be established. Thirdly, the waveguide performance will be theoretically and experimentally evaluated. At last, the supercontinuum generation from visible to infrared will be demonstrated by utilizing soliton dynamics in high order guided modes. The outcome from this work paves the way towards fully integrated optical comb in UV and visible spectrum.
Date Created
2020
Agent

Chemical and geometric transformations of MoS2/WS2 heterostructures by plasma treatment

157946-Thumbnail Image.png
Description
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are effective components in optoelectronic devices due to their tunable and attractive electric, optical and chemical properties. Combining different 2D TMDCs into either vertical or lateral

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are effective components in optoelectronic devices due to their tunable and attractive electric, optical and chemical properties. Combining different 2D TMDCs into either vertical or lateral heterostructures has been pursued to achieve new optical and electronic properties. Chemical treatments have also been pursued to effectively tune the properties of 2D TMDCs. Among many chemical routes that have been studied, plasma treatment is notable for being rapid and versatile. In Wang’s group earlier work, plasma treatment of MoS2 and WS2 resulted in the formation of MoO3 and WO3 nanosheets and nanoscrolls. However, plasma treatment of 2D TMDC heterostructures have not been widely studied. In this dissertation, MoS2/WS2 vertical and lateral heterostructures were grown and treated with air plasma. The result showed that the vertical heterostructure and lateral heterostructures behaved differently. For the vertical heterostructures, the top WS2 layer acts as a shield for the underlying MoS2 monolayer from oxidizing and forming transition metal oxide nanoscrolls, as shown by Raman spectroscopy and atomic force microscopy (AFM). On the contrary, for the lateral heterostructures, the WS2 that was grown surrounding the MoS2 triangular core served as a tight frame to stop the propagation of the oxidized MoS2, resulting a gradient of crack distribution. These findings provide insight into how plasma treatment can affect the formation of oxide in heterostructure, which can have further application in nanoelectronic devices and electrocatalysts.
Date Created
2019
Agent

A Fundamental Study of Bulk, Layered, and Monolayers of Hybrid Perovskites

157733-Thumbnail Image.png
Description
A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes

A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant, atomic spacing, and lattice vibrations.

Optical and electrical properties have also been studied mainly focusing on the thickness effect on different properties where the Photoluminescence (PL) and exciton binding energies show energy shift as thickness of the material changes. Temperature dependent PL has shown different characteristics when comparing methylammonium lead bromide (MAPbBr3) to butylammonium lead bromide (BA2PbBr4) and comparing the two layered n=1 materials butylammonium lead bromide (BA2PbBr4) to butylammonium lead iodide (BA2PbI4). Time-resolved spectroscopy displays different lifetimes as thickness of bromide-based perovskite changes. Finally, thickness dependence (starting from monolayers) Kelvin Probe Force Microscopy (KPFM) of the layered materials BA2PbBr4, Butylammonium(methylammonium)lead bromide (BA2MAPb2Br7), and molybdenum sulfide (MoS2) were studied showing an exponential relation between the thickness of the materials and their surface potentials.
Date Created
2019
Agent

Quantum nonlinear dynamics in graphene, optomechanical, and semiconductor superlattice systems

155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
Date Created
2016
Agent

High-modulation-speed LEDs based on III-nitride

154494-Thumbnail Image.png
Description
III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal

III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.
Date Created
2016
Agent