Applications Of Two-Dimensional Layered Materials in Eradication of Multi-Drug Resistant Organisms and Natural Enzyme Mimicking Catalysis

161877-Thumbnail Image.png
Description
The severe resistance of bacteria and fungi towards common antibiotic drugs has led to the increasing prevalence of infections due to multi-drug resistant microbes, which is one of the most serious issue faced by the healthcare system worldwide. These drug-resistant

The severe resistance of bacteria and fungi towards common antibiotic drugs has led to the increasing prevalence of infections due to multi-drug resistant microbes, which is one of the most serious issue faced by the healthcare system worldwide. These drug-resistant bacteria have led to significant health problems and fatalities whereas drug-resistance fungi possess significant threat to humans, livestock, and crops globally. Furthermore, this drug resistance leads to the formation of biofilms, which are thick layers of microbes embedded in extracellular polymeric matrix. They adhere to both living and nonliving surfaces, making it harder to contain or eradicate these pathogens. The conventional strategy for combating these pathogenic bacteria and fungi has its limitations and new antimicrobials are constantly required to fight the growing resistant mechanisms. Hence, there is an immediate need for an alternative strategy to combat these drug-resistant isolates. Herein, this dissertation reports the development of novel potent antimicrobial agent based on tow-dimensional layered nanomaterials dispersed in biocompatible oligonucleotide, biomolecules, polymers, and surfactant. These synthesized novel nanomaterials successfully eliminated multidrug-resistant microbes with synergistic efforts of physical interaction, membrane disintegration, depolarization and intrinsic antimicrobial properties leading to cell death. These systems were highly effective against a broad spectrum of microbes including drug-resistant gram-positive, gram-negative bacteria and fungal isolates. Furthermore, they were successful in eradication of mature biofilm as well as inhibition of biofilms on several medically relevant surfaces. Overall, these novel systems have exceptional potential as a promising alternative solution in solving current problems faced by the healthcare system sue to these pathogenic microbes. For the next direction, a different avenue was explored where a novel system based on two-dimensional layered material with antibacterial properties was analyzed for enzyme-like activity. These nanomaterials with intrinsic enzyme-like properties are commonly known as nanozymes have many advantages over natural enzymes such as low cost, scalability and high stability. A class of ultra-high temperature ceramics known as metal diborides were synthesized in biocompatible surfactant followed by analysis of their enzymatic activity and antibacterial activity. Results demonstrate this novel system possesses a unique combination of exceptionally high affinity towards hydrogen peroxide and high activity per cost. Furthermore, it is extremely potent against pathogenic bacteria and has a high degree of biocompatibility. Hence, this new system opens the door for future possible applications in biomedicine with further research.
Date Created
2021
Agent

Ultrafast, Scalable Manufacturing of Holey Graphene for High-Performance Electrochemical Applications

161480-Thumbnail Image.png
Description
Nanoholes on the basal plane of graphene can provide abundant mass transport channels and chemically active sites for enhancing the electrochemical performance, making this material highly promising in applications such as supercapacitors, batteries, desalination, molecule or ion detection, and biosensing.

Nanoholes on the basal plane of graphene can provide abundant mass transport channels and chemically active sites for enhancing the electrochemical performance, making this material highly promising in applications such as supercapacitors, batteries, desalination, molecule or ion detection, and biosensing. However, the current solution-based chemical etching processes to manufacture these nanoholes commonly suffer from low process efficiency, scalability, and controllability, because conventional bulk heating cannot promote the etching reactions. Herein, a novel manufacturing method is developed to address this issue using microwave irradiation to facilitate and control the chemical etching of graphene. In this process, microwave irradiation induces selective heating of graphene in the aqueous solution due to an energy dissipation mechanism coupled with the dielectric and conduction losses. This strategy brings a remarkable reduction of processing time from hour-scale to minute-scale compared to the conventional approaches. By further incorporating microwave pretreatment, it is possible to control the population and area percentage of the in-plane nanoholes on graphene. Theoretical calculations reveal that the nanoholes emerge and grow by a repeating reduction–oxidation process occurring at the edge-sites atoms around vacancy defects on the graphene basal plane. The reduced holey graphene oxide sheets obtained via the microwave-assisted chemical etching method exhibit great potentials in supercapacitors and electrocatalysis. Excellent capacitive performance and electrocatalytic activity are observed in electrochemical measurements. The improvements against the non-holey counterpart are attributed to the enhanced kinetics involving ion diffusion and heterogeneous charge transfer.
Date Created
2021
Agent

Nanotechnology Activity Videos

Description

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction with ASU’s virtual Open Door 2021, this creative project aimed to create activity videos based on the Nano@Home website to make the activities more interactive for students.

Date Created
2021-05
Agent

Understanding Solar Cell Contacts Through Simulations

158863-Thumbnail Image.png
Description
The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which

The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which are limited in performance by increased non-radiative recombination in the doped regions. This limitation can be overcome through the use of passivating contacts, which prevent recombination at the absorber interfaces while providing the selectivity to efficiently separate the charge carriers generated in the absorber. This thesis aims at developing an understanding of how the material properties of the contact affect device performance through simulations.The partial specific contact resistance framework developed by Onno et al. aims to link material behavior to device performance specifically at open circuit. In this thesis, the framework is expanded to other operating points of a device, leading to a model for calculating the partial contact resistances at any current flow. The error in calculating these resistances is irrelevant to device performance resulting in an error in calculating fill factor from resistances below 0.1% when the fill factors of the cell are above 70%, i.e., for cells with good passivation and selectivity.
Further, silicon heterojunction (SHJ) and tunnel-oxide based solar cells are simulated in 1D finite-difference modeling package AFORS-HET. The effects of material property changes on device performance are investigated using novel contact materials like Al0.8Ga0.2As (hole contact for SHJ) and ITO (electron contact for tunnel-oxide cells). While changing the bandgap and electron affinity of the contact affect the height of the Schottky barrier and hence contact resistivity, increasing the doping of the contact will increase its selectivity. In the case of ITO, the contact needs to have a work function below 4.2 eV to be electron selective, which suggests that other low work function TCOs (like AZO) will be more applicable as alternative dopant-free electron contacts. The AFORS-HET model also shows that buried doped regions arising from boron diffusion in the absorber can damage passivation and decrease the open circuit voltage of the device.
Date Created
2020
Agent

Characterization of Liquid-Phase Exfoliated Two-Dimensional Nanomaterials Derived from Non-van der Waals Solids

158756-Thumbnail Image.png
Description
Liquid-phase exfoliation (LPE) is a straightforward and scalable method of producing two-dimensional nanomaterials. The LPE process has typical been applied to layered van der Waals (vdW) solids, such as graphite and transition metal dichalcogenides, which have layers held together by

Liquid-phase exfoliation (LPE) is a straightforward and scalable method of producing two-dimensional nanomaterials. The LPE process has typical been applied to layered van der Waals (vdW) solids, such as graphite and transition metal dichalcogenides, which have layers held together by weak van der Waals interactions. However, recent research has shown that solids with stronger bonds and non-layered structures can be converted to solution-stabilized nanosheets via LPE, some of which have shown to have interesting optical, magnetic, and photocatalytic properties. In this work, two classes of non-vdW solids – hexagonal metal diborides and boron carbide – are investigated for their morphological features, their chemical and crystallographic compositions, and their solvent preference for exfoliation. Spectroscopic and microscopic techniques are used to verify the composition and crystal structure of metal diboride nanosheets. Their application as mechanical fillers is demonstrated by incorporation into polymer nanocomposite films of polyvinyl alcohol and by successful integration into liquid photocurable 3D printing resins. Application of Hansen solubility theory to two metal diboride compositions enables extrapolation of their affinities for certain solvents and is also used to find solvent blends suitable for the nanosheets. Boron carbide nanosheets are examined for their size and thickness and their exfoliation planes are computationally analyzed and experimentally investigated using high-resolution transmission electron microscopy. The resulting analyses indicate that the exfoliation of boron carbide leads to multiple observed exfoliation planes upon LPE processing. Overall, these studies provide insight into the production and applications of LPE-produced nanosheets derived from non-vdW solids and suggest their potential application as mechanical fillers in polymer nanocomposites.
Date Created
2020
Agent

Insights into Crack Dynamics Governing Surface Quality during Spalling of Semiconductors

158707-Thumbnail Image.png
Description

The rationale of this thesis is to provide a thorough understanding of spalling for semiconductor materials and develop a low temperature spalling technology that reduces the surface roughness of the spalled wafers for Photovoltaics applications.

Date Created
2020
Agent

Selenium Removal with Nanotechnology-Enabled Water Treatment Using Conductive Copolymer Sorbents

131569-Thumbnail Image.png
Description
Heavy metals such as selenium can be especially important to limit because they can cause serious health problems even at relatively low concentrations. In an effort to selectively remove selenium from solution, a PAABA (poly(aniline-co-p-aminobenzoic acid) conductive copolymer was synthesized

Heavy metals such as selenium can be especially important to limit because they can cause serious health problems even at relatively low concentrations. In an effort to selectively remove selenium from solution, a PAABA (poly(aniline-co-p-aminobenzoic acid) conductive copolymer was synthesized in a selenic acid solution, and its ability to remove selenium was studied. Analysis of the Raman spectra confirmed the hypothesized formation of PAABA polymer. Constant voltage cycles showed success in precipitating the selenium out of solution via electroreduction, and ICP-MS confirmed the reduction of selenium concentrated in solution. These results indicate the PAABA synthesized in selenic acid shows promise for selective water treatment.
Date Created
2020-05
Agent

Artificial Enzymes from Hafnium Diboride Nanosheets Dispersed in Biocompatible Block Copolymers

157979-Thumbnail Image.png
Description
Nanomaterials that exhibit enzyme-like catalytic activity or nanozymes have many advantages compared to biological enzymes such as low cost of production and high stability. There is a substantial interest in studying two-dimensional materials due to their exceptional properties. Hafnium diboride

Nanomaterials that exhibit enzyme-like catalytic activity or nanozymes have many advantages compared to biological enzymes such as low cost of production and high stability. There is a substantial interest in studying two-dimensional materials due to their exceptional properties. Hafnium diboride is a type of two-dimensional material and belongs to the metal diborides family made of hexagonal layers of boron atoms separated by metal layers. In this work, the peroxidase-like activity of hafnium diboride nanoflakes dispersed in the block copolymer F77 was discovered for the first time. The kinetics, mechanisms and catalytic performance towards the oxidation of the chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide are presented in this work. Kinetic parameters were determined by steady-state kinetics and a comparison with other nanozymes is given. Results show that the HfB2/F77 nanozyme possesses a unique combination of unusual high affinity towards hydrogen peroxide and high activity per cost. These findings are important for applications that involve reactions with hydrogen peroxide.
Date Created
2019
Agent

Chemical and geometric transformations of MoS2/WS2 heterostructures by plasma treatment

157946-Thumbnail Image.png
Description
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are effective components in optoelectronic devices due to their tunable and attractive electric, optical and chemical properties. Combining different 2D TMDCs into either vertical or lateral

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are effective components in optoelectronic devices due to their tunable and attractive electric, optical and chemical properties. Combining different 2D TMDCs into either vertical or lateral heterostructures has been pursued to achieve new optical and electronic properties. Chemical treatments have also been pursued to effectively tune the properties of 2D TMDCs. Among many chemical routes that have been studied, plasma treatment is notable for being rapid and versatile. In Wang’s group earlier work, plasma treatment of MoS2 and WS2 resulted in the formation of MoO3 and WO3 nanosheets and nanoscrolls. However, plasma treatment of 2D TMDC heterostructures have not been widely studied. In this dissertation, MoS2/WS2 vertical and lateral heterostructures were grown and treated with air plasma. The result showed that the vertical heterostructure and lateral heterostructures behaved differently. For the vertical heterostructures, the top WS2 layer acts as a shield for the underlying MoS2 monolayer from oxidizing and forming transition metal oxide nanoscrolls, as shown by Raman spectroscopy and atomic force microscopy (AFM). On the contrary, for the lateral heterostructures, the WS2 that was grown surrounding the MoS2 triangular core served as a tight frame to stop the propagation of the oxidized MoS2, resulting a gradient of crack distribution. These findings provide insight into how plasma treatment can affect the formation of oxide in heterostructure, which can have further application in nanoelectronic devices and electrocatalysts.
Date Created
2019
Agent

Surface interactions of layered chalcogenides in covalent functionalization and metal adsorption

157723-Thumbnail Image.png
Description
Layered chalcogenides are a diverse class of crystalline materials that consist of covalently bound building blocks held together by van der Waals forces, including the transition metal dichalcogenides (TMDCs) and the pnictogen chalcogenides (PCs) among all. These materials, in particular,

Layered chalcogenides are a diverse class of crystalline materials that consist of covalently bound building blocks held together by van der Waals forces, including the transition metal dichalcogenides (TMDCs) and the pnictogen chalcogenides (PCs) among all. These materials, in particular, MoS2 which is the most widely studied TMDC material, have attracted significant attention in recent years due to their unique physical, electronic, optical, and chemical properties that depend on the number of layers. Due to their high aspect ratios and extreme thinness, 2D materials are sensitive to modifications via chemistry on their surfaces. For instance, covalent functionalization can be used to robustly modify the electronic properties of 2D materials, and can also be used to attach other materials or structures. Metal adsorption on the surfaces of 2D materials can also tune their electronic structures, and can be used as a strategy for removing metal contaminants from water. Thus, there are many opportunities for studying the fundamental surface interactions of 2D materials and in particular the TMDCs and PCs.

The work reported in this dissertation represents detailed fundamental studies of the covalent functionalization and metal adsorption behavior of layered chalcogenides, which are two significant aspects of the surface interactions of 2D materials. First, we demonstrate that both the Freundlich and Temkin isotherm models, and the pseudo-second-order reaction kinetics model are good descriptors of the reaction due to the energetically inhomogeneous surface MoS2 and the indirect adsorbate-adsorbate interactions from previously attached nitrophenyl (NP) groups. Second, the covalent functionalization using aryl diazonium salts is extended to nanosheets of other representative TMDC materials MoSe2, WS2, and WSe2, and of the representative PC materials Bi2S3 and Sb2S3, demonstrated using atomic force microscopy (AFM) imaging and Fourier transform infrared spectroscopy (FTIR). Finally, using AFM and X-ray photoelectron spectroscopy (XPS), it is shown that Pb, Cd Zn and Co form nanoclusters on the MoS2 surface without affecting the structure of the MoS2 itself. The metals can also be thermally desorbed from MoS2, thus suggesting a potential application as a reusable water purification technology.
Date Created
2019
Agent