This study investigates the application of Computational Fluid Dynamics (CFD) to the medical field. An overview of recent advances in computational simulation and modeling in medical applications is provided, with a particular emphasis on CFD. This study attempts to validate…
This study investigates the application of Computational Fluid Dynamics (CFD) to the medical field. An overview of recent advances in computational simulation and modeling in medical applications is provided, with a particular emphasis on CFD. This study attempts to validate CFD and demonstrate the possibility for applying CFD to the clinical treatment and evaluation of atherosclerotic disease. Three different geometric configurations are investigated: one idealized bifurcation with a primary diameter of 8 mm, and two different patient-specific models of the bifurcation from the common femoral artery to the superficial and deep femoral arteries. CFD is compared against experimental measurements of steady state and pulsatile flow acquired with Particle Image Velocimetry (PIV). Steady state and pulsatile flow rates that are consistent with those observed in the femoral artery are used. In addition, pulsatile CFD simulations are analyzed in order to demonstrate meaningful clinical applications for studying and evaluating the treatment of atherosclerotic disease. CFD was successfully validated for steady state flow, with an average percent error of 6.991%. Potential for validation was also demonstrated for pulsatile flow, but methodological errors warrant further investigation to reformulate methods and analyze results. Quantities frequently associated with atherosclerotic disease and arterial bifurcations, such as large variations in wall shear stress and the presence of recirculation zones are demonstrated from the pulsatile CFD simulations. Further study is required in order to evaluate whether or not such phenomena are represented by CFD accurately. Further study must also be performed in order to evaluate the practicality and utility of CFD for the evaluation of atherosclerotic disease treatment.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Magnetic resonance flow imaging techniques provide quantitative and qualitative information that can be attributed to flow related clinical pathologies. Clinical use of MR flow quantification requires fast acquisition and reconstruction schemes, and minimization of post processing errors. The purpose…
Magnetic resonance flow imaging techniques provide quantitative and qualitative information that can be attributed to flow related clinical pathologies. Clinical use of MR flow quantification requires fast acquisition and reconstruction schemes, and minimization of post processing errors. The purpose of this work is to provide improvements to the post processing of volumetric phase contrast MRI (PCMRI) data, identify a source of flow bias for cine PCMRI that has not been previously reported in the literature, and investigate a dynamic approach to image bulk cerebrospinal fluid (CSF) drainage in ventricular shunts. The proposed improvements are implemented as three research projects.
In the first project, the improvements to post processing are made by proposing a new approach to estimating noise statistics for a single spiral acquisition, and using the estimated noise statistics to generate a mask distinguishing flow regions from background noise and static tissue in an image volume. The mask is applied towards reducing the computation time of phase unwrapping. The proposed noise estimation is shown to have comparable noise statistics as that of a vendor specific noise dynamic scan, with the added advantage of reduced scan time. The sparse flow region subset of the image volume is shown to speed up phase unwrapping for multidirectional velocity encoded 3D PCMRI scans. The second research project explores the extent of bias in cine PCMRI based flow estimates is investigated for CSF flow in the cerebral aqueduct. The dependance of the bias on spatial and temporal velocity gradient components is described. A critical velocity threshold is presented to prospectively determine the extent of bias as a function of scan acquisition parameters.
Phase contrast MR imaging is not sensitive to measure bulk CSF drainage. A dynamic approach using a CSF label is investigated in the third project to detect bulk flow in a ventricular shunt. The proposed approach uses a preparatory pulse to label CSF signal and a variable delay between the preparatory pulse and data acquisition enables tracking of the CSF bulk flow.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of…
Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Atypical brainstem modulation of pain might contribute to changes in sensory processing typical of migraine. The study objective was to investigate whether migraine is associated with brainstem structural alterations that correlate with this altered pain processing. MRI T1-weighted images of…
Atypical brainstem modulation of pain might contribute to changes in sensory processing typical of migraine. The study objective was to investigate whether migraine is associated with brainstem structural alterations that correlate with this altered pain processing. MRI T1-weighted images of 55 migraine patients and 58 healthy controls were used to: (1) create deformable mesh models of the brainstem that allow for shape analyses; (2) calculate volumes of the midbrain, pons, medulla and the superior cerebellar peduncles; (3) interrogate correlations between regional brainstem volumes, cutaneous heat pain thresholds, and allodynia symptoms. Migraineurs had smaller midbrain volumes (healthy controls = 61.28 mm3, SD = 5.89; migraineurs = 58.80 mm3, SD = 6.64; p = 0.038), and significant (p < 0.05) inward deformations in the ventral midbrain and pons, and outward deformations in the lateral medulla and dorsolateral pons relative to healthy controls. Migraineurs had a negative correlation between ASC-12 allodynia symptom severity with midbrain volume (r = − 0.32; p = 0.019) and a positive correlation between cutaneous heat pain thresholds with medulla (r = 0.337; p = 0.012) and cerebellar peduncle volumes (r = 0.435; p = 0.001). Migraineurs with greater symptoms of allodynia have smaller midbrain volumes and migraineurs with lower heat pain thresholds have smaller medulla and cerebellar peduncles. The brainstem likely plays a role in altered sensory processing in migraine and brainstem structure might reflect severity of allodynia and hypersensitivity to pain in migraine.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure…
Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a region of interest. The need for high temporal resolution to measure contrast agent dynamics limits the spatial coverage of perfusion parameter maps which limits the utility of DSC-perfusion studies in pathologies involving the entire brain. Typical clinical DSC-perfusion studies are capable of acquiring 10-15 slices, generally centered on a known lesion or pathology.
The methods developed in this work improve the spatial coverage of whole-brain DSC-MRI by combining a highly efficient 3D spiral k-space trajectory with Generalized Autocalibrating Partial Parallel Acquisition (GRAPPA) parallel imaging without increasing temporal resolution. The proposed method is capable of acquiring 30 slices with a temporal resolution of under 1 second, covering the entire cerebrum with isotropic spatial resolution of 3 mm. Additionally, the acquisition method allows for correction of T1-enhancing leakage effects by virtue of collecting two echoes, which confound DSC perfusion measurements. The proposed DSC-perfusion method results in high quality perfusion parameter maps across a larger volume than is currently available with current clinical standards, improving diagnostic utility of perfusion MRI methods, which ultimately improves patient care.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D) imaging system can be used to study basic biological processes and to diagnose…
Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D) imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism that such systems apply to accomplish 3D imaging is rotation of a single cell about a fixed axis. However, many cell rotation mechanisms require intricate and tedious microfabrication, or fail to provide a suitable environment for living cells. To address these and related challenges, we applied numerical simulation methods to design new microfluidic chambers capable of generating fluidic microvortices to rotate suspended cells. We then compared several microfluidic chip designs experimentally in terms of: (1) their ability to rotate biological cells in a stable and precise manner; and (2) their suitability, from a geometric standpoint, for microscopic cell imaging. We selected a design that incorporates a trapezoidal side chamber connected to a main flow channel because it provided well-controlled circulation and met imaging requirements. Micro particle-image velocimetry (micro-PIV) was used to provide a detailed characterization of flows in the new design. Simulated and experimental results demonstrate that a trapezoidal side chamber represents a viable option for accomplishing controlled single cell rotation. Further, agreement between experimental and simulated results confirms that numerical simulation is an effective method for chamber design.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Background: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor…
Background: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM.
Methods: We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set.
Results: We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients).
Conclusion: Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Magnetic resonance spectroscopic imaging (MRSI) is a valuable technique for assessing the in vivo spatial profiles of metabolites like N-acetylaspartate (NAA), creatine, choline, and lactate. Changes in metabolite concentrations can help identify tissue heterogeneity, providing prognostic and diagnostic information to…
Magnetic resonance spectroscopic imaging (MRSI) is a valuable technique for assessing the in vivo spatial profiles of metabolites like N-acetylaspartate (NAA), creatine, choline, and lactate. Changes in metabolite concentrations can help identify tissue heterogeneity, providing prognostic and diagnostic information to the clinician. The increased uptake of glucose by solid tumors as compared to normal tissues and its conversion to lactate can be exploited for tumor diagnostics, anti-cancer therapy, and in the detection of metastasis. Lactate levels in cancer cells are suggestive of altered metabolism, tumor recurrence, and poor outcome. A dedicated technique like MRSI could contribute to an improved assessment of metabolic abnormalities in the clinical setting, and introduce the possibility of employing non-invasive lactate imaging as a powerful prognostic marker.
However, the long acquisition time in MRSI is a deterrent to its inclusion in clinical protocols due to associated costs, patient discomfort (especially in pediatric patients under anesthesia), and higher susceptibility to motion artifacts. Acceleration strategies like compressed sensing (CS) permit faithful reconstructions even when the k-space is undersampled well below the Nyquist limit. CS is apt for MRSI as spectroscopic data are inherently sparse in multiple dimensions of space and frequency in an appropriate transform domain, for e.g. the wavelet domain. The objective of this research was three-fold: firstly on the preclinical front, to prospectively speed-up spectrally-edited MRSI using CS for rapid mapping of lactate and capture associated changes in response to therapy. Secondly, to retrospectively evaluate CS-MRSI in pediatric patients scanned for various brain-related concerns. Thirdly, to implement prospective CS-MRSI acquisitions on a clinical magnetic resonance imaging (MRI) scanner for fast spectroscopic imaging studies. Both phantom and in vivo results demonstrated a reduction in the scan time by up to 80%, with the accelerated CS-MRSI reconstructions maintaining high spectral fidelity and statistically insignificant errors as compared to the fully sampled reference dataset. Optimization of CS parameters involved identifying an optimal sampling mask for CS-MRSI at each acceleration factor. It is envisioned that time-efficient MRSI realized with optimized CS acceleration would facilitate the clinical acceptance of routine MRSI exams for a quantitative mapping of important biomarkers.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for…
Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able to test many theoretical therapies without having to perform clinical trials and experiments. Mathematical oncology will continue to be an important tool in the future regarding cancer therapies and management.
This dissertation is structured as a growing tumor. Chapters 2 and 3 consider spheroid models. These models are adept at describing 'early-time' tumors, before the tumor needs to co-opt blood vessels to continue sustained growth. I consider two partial differential equation (PDE) models for spheroid growth of glioblastoma. I compare these models to in vitro experimental data for glioblastoma tumor cell lines and other proposed models. Further, I investigate the conditions under which traveling wave solutions exist and confirm numerically.
As a tumor grows, it can no longer be approximated by a spheroid, and it becomes necessary to use in vivo data and more sophisticated modeling to model the growth and diffusion. In Chapter 4, I explore experimental data and computational models for describing growth and diffusion of glioblastoma in murine brains. I discuss not only how the data was obtained, but how the 3D brain geometry is created from Magnetic Resonance (MR) images. A 3D finite-difference code is used to model tumor growth using a basic reaction-diffusion equation. I formulate and test hypotheses as to why there are large differences between the final tumor sizes between the mice.
Once a tumor has reached a detectable size, it is diagnosed, and treatment begins. Chapter 5 considers modeling the treatment of prostate cancer. I consider a joint model with hormonal therapy as well as immunotherapy. I consider a timing study to determine whether changing the vaccine timing has any effect on the outcome of the patient. In addition, I perform basic analysis on the six-dimensional ordinary differential equation (ODE). I also consider the limiting case, and perform a full global analysis.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high…
Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of cerebral aneurysms is therefore essential to public health. The goal of treating an aneurysm is to isolate the aneurysm from its surrounding circulation, thereby preventing further growth and rupture. Endovascular treatment for cerebral aneurysms has gained popularity over traditional surgical techniques due to its minimally invasive nature and shorter associated recovery time. The hemodynamic modifications that the treatment effects can promote thrombus formation within the aneurysm leading to eventual isolation. However, different treatment devices can effect very different hemodynamic outcomes in aneurysms with different geometries.
Currently, cerebral aneurysm risk evaluation and treatment planning in clinical practice is largely based on geometric features of the aneurysm including the dome size, dome-to-neck ratio, and parent vessel geometry. Hemodynamics, on the other hand, although known to be deeply involved in cerebral aneurysm initiation and progression, are considered to a lesser degree. Previous work in the field of biofluid mechanics has demonstrated that geometry is a driving factor behind aneurysmal hemodynamics.
The goal of this research is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Geometric main effects were analyzed to quantify contributions made by geometric factors that describe cerebral aneurysms (i.e., dome size, dome-to-neck ratio, and inflow angle) to clinically relevant hemodynamic responses (i.e., wall shear stress, root mean square velocity magnitude and cross-neck flow). Computational templates of idealized bifurcation and sidewall aneurysms were created to satisfy a two-level full factorial design, and examined using computational fluid dynamics. A subset of the computational bifurcation templates was also translated into physical models for experimental validation using particle image velocimetry. The effects of geometry on treatment were analyzed by virtually treating the aneurysm templates with endovascular devices. The statistical relationships between geometry, treatment, and flow that emerged have the potential to play a valuable role in clinical practice.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)