The purpose of this thesis was to explore how changes in the geometry of a bifurcating cerebral aneurysm will affect the hemodynamics in idealized models after stent treatment. This thesis explores the use of a computationally modeled Enterprise Vascular Reconstruction…
The purpose of this thesis was to explore how changes in the geometry of a bifurcating cerebral aneurysm will affect the hemodynamics in idealized models after stent treatment. This thesis explores the use of a computationally modeled Enterprise Vascular Reconstruction Device (Cordis, East Bridgewater, NJ), a high porosity and closed cell design. The models represent idealized cases of saccular aneurysms with dome sizes of either 4mm or 6mm and a dome to neck ratio of either 3:2 or 2:1. Two aneurysm contact angles are studied, one at 45 degrees and the other at 90 degrees. The stent was characterized and deployed with the use of Finite Element Analysis into each model. Computational Fluid Dynamic principles were applied in series of simulations on treated and untreated models. Data was gathered in the neck plane for the average velocity magnitude, root mean squared velocity, average flow vector angle of deflection, and the cross neck flow rate. Within the aneurysm, the average velocity magnitude, root mean squared velocity, and average pressure were calculated. Additionally, the mass flow rate at each outlet was recorded. The results of this study indicate that the Enterprise Stent was most effective in the sharper, 90 degree geometry of Model 3. Additionally, the stent had an adverse effect on the Models 1 and 4, which had the smallest neck sizes. Conclusions are that the Enterprise Stent, as a stand-alone treatment method is only reliable in situations that take advantage of its design.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Intracranial aneurysms are blood \u2014filled sacs along the blood vessels in the brain. These aneurysms can be particularly dangerous due to difficulty in detection and potential lifethreatening outcome. When these aneurysms are detected, there are few treatment options to prevent…
Intracranial aneurysms are blood \u2014filled sacs along the blood vessels in the brain. These aneurysms can be particularly dangerous due to difficulty in detection and potential lifethreatening outcome. When these aneurysms are detected, there are few treatment options to prevent rupture, one of which is endovascular stents. By placing a stent across the parent vessel, blood flow can be diverted from the aneurysm. Reduced flow reduces the chance of rupture and promotes clotting within the aneurysm. In this study, hemodynamics in idealized basilar tip aneurysm models were investigated at three flow rates using particle imaging velocimetry (PIV). Two models were created with increasing dome size (4mm vs 6mm), and constant dome-to-neck ratio (3:2) and parent vessel contact angle to represent growing aneurysm. With the pulsatile flow, data is acquired at three separate points in the cardiac cycle. Both of the models were studied untreated, treated with Enterprise stent and treated with Pipeline stent. Enterprise stent was developed mainly for structural support while the Pipeline stent was developed as a flow diverter. Due to target functions of the stents, Enterprise stent is more porous than the Pipeline stent. Hemodynamics were studied using a stereo particle image velocimetry technique. The flow in models was characterized by neck and aneurysmal RMS velocity, neck and aneurysm kinetic energy, cross neck flow. It was found that both of the stents are capable diverting flow. Enterprise reduced aneurysmal RMS velocity in model 1 by 38.7% and in model 2 by 76.2%. Pipeline stent reduced aneurysmal RMS velocity in model 1 by 71.4% and in model 2 by 88.1%. Both reductions are data for 3ml/s at peak systole pulsatile flow. Data shows that the Pipeline stent is better than Enterprise stent at reducing flow to the aneurysm.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D) imaging system can be used to study basic biological processes and to diagnose…
Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D) imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism that such systems apply to accomplish 3D imaging is rotation of a single cell about a fixed axis. However, many cell rotation mechanisms require intricate and tedious microfabrication, or fail to provide a suitable environment for living cells. To address these and related challenges, we applied numerical simulation methods to design new microfluidic chambers capable of generating fluidic microvortices to rotate suspended cells. We then compared several microfluidic chip designs experimentally in terms of: (1) their ability to rotate biological cells in a stable and precise manner; and (2) their suitability, from a geometric standpoint, for microscopic cell imaging. We selected a design that incorporates a trapezoidal side chamber connected to a main flow channel because it provided well-controlled circulation and met imaging requirements. Micro particle-image velocimetry (micro-PIV) was used to provide a detailed characterization of flows in the new design. Simulated and experimental results demonstrate that a trapezoidal side chamber represents a viable option for accomplishing controlled single cell rotation. Further, agreement between experimental and simulated results confirms that numerical simulation is an effective method for chamber design.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Flow diverting devices and stents can be used to treat cerebral aneurysms too difficult to treat with coiling or craniotomy and clipping. However, the hemodynamic effects of these devices have not been studied in depth. The objective of this study…
Flow diverting devices and stents can be used to treat cerebral aneurysms too difficult to treat with coiling or craniotomy and clipping. However, the hemodynamic effects of these devices have not been studied in depth. The objective of this study was to quantify and understand the fluid dynamic changes that occur within bifurcating aneurysms when treated with different devices and configurations. Two physical models of bifurcating cerebral aneurysms were constructed: an idealized model and a patient-specific model. The models were treated with four device configurations: a single low-porosity Pipeline embolization device (PED) and one, two, and three high-porosity Enterprise stents deployed in a telescoping fashion. Particle image velocimetry was used to measure the fluid dynamics within the aneurysms; pressure was measured within the patient-specific model. The PED resulted in the greatest reductions in fluid dynamic activity within the aneurysm for both models. However, a configuration of three telescoping stents reduced the fluid dynamic activity within the aneurysm similarly to the PED treatment. Pressure within the patient-specific aneurysm did not show significant changes among the treatment configurations; however, the pressure difference across the untreated vessel side of the model was greatest with the PED. Treatment with stents and a flow diverter led to reductions in aneurysmal fluid dynamic activity for both idealized and patient-specific models. While the PED resulted in the greatest flow reductions, telescoping high-porosity stents performed similarly and may represent a viable treatment alternative in situations where the use of a PED is not an option.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)