Cropland Carbon Sequestration in Arizona: Assessing the Impact of Agricultural Land Use on Aboveground Carbon Storage

Description
Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought

Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural landscape are expected. To understand these land use changes and their impact on carbon dynamics, our study quantified aboveground carbon storage in both cultivated and abandoned agricultural fields. To accomplish this, we employed Python and various geospatial libraries in Jupyter Notebook files, for thorough dataset assembly and visual, quantitative analysis. We focused on nine counties known for high cultivation levels, primarily located in the lower latitudes of Arizona. Our analysis investigated carbon dynamics across not only abandoned and actively cultivated croplands but also neighboring uncultivated land, for which we estimated the extent. Additionally, we compared these trends with those observed in developed land areas. The findings revealed a hierarchy in aboveground carbon storage, with currently cultivated lands having the lowest levels, followed by abandoned croplands and uncultivated wilderness. However, wilderness areas exhibited significant variation in carbon storage by county compared to cultivated and abandoned lands. Developed lands ranked highest in aboveground carbon storage, with the median value being the highest. Despite county-wide variations, abandoned croplands generally contained more carbon than currently cultivated areas, with adjacent wilderness lands containing even more than both. This trend suggests that cultivating croplands in the region reduces aboveground carbon stores, while abandonment allows for some replenishment, though only to a limited extent. Enhancing carbon stores in Arizona can be achieved through active restoration efforts on abandoned cropland. By promoting native plant regeneration and boosting aboveground carbon levels, these measures are crucial for improving carbon sequestration. We strongly advocate for implementing this step to facilitate the regrowth of native plants and enhance overall carbon storage in the region.
Date Created
2024-05
Agent

Analyzing Parameter Impact in Computational Modeling of Glioblastoma Multiforme Growth

Description
Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of

Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma growth. The study aims to explore key factors influencing tumor morphology and to contribute to enhancing prediction techniques for treatment.
Date Created
2024-05
Agent

Climate and Infection-Age on West Nile Virus Transmission

190964-Thumbnail Image.png
Description
Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector

Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation addresses the questions of how vector and host demography impact WNV dynamics, and how expected and likely climate change scenarios will affect demographic and epidemiological processes of WNV transmission. First, a data fusion method is developed that connects non-autonomous logistic model parameters to mosquito time series data. This method captures the inter-annual and intra-seasonal variation of mosquito populations within a geographical location. Next, a three-population WNV model between mosquito vectors, bird hosts, and human hosts with infection-age structure for the vector and bird host populations is introduced. A sensitivity analysis uncovers which parameters have the most influence on WNV outbreaks. Finally, the WNV model is extended to include the non-autonomous population model and temperature-dependent processes. Model parameterization using historical temperature and human WNV case data from the Greater Toronto Area (GTA) is conducted. Parameter fitting results are then used to analyze possible future WNV dynamics under two climate change scenarios. These results suggest that WNV risk for the GTA will substantially increase as temperature increases from climate change, even under the most conservative assumptions. This demonstrates the importance of ensuring that the warming of the planet is limited as much as possible.
Date Created
2023
Agent

Characterization & Control of Non-Modularity in Synthetic Gene Circuits

189326-Thumbnail Image.png
Description
Over the past 20 years, the fields of synthetic biology and synthetic biosystems engineering have grown into mature disciplines, leading to significant breakthroughs in cancer research, diagnostics, cell-based medicines, biochemical production, etc. Application of mathematical modelling to biological and biochemical

Over the past 20 years, the fields of synthetic biology and synthetic biosystems engineering have grown into mature disciplines, leading to significant breakthroughs in cancer research, diagnostics, cell-based medicines, biochemical production, etc. Application of mathematical modelling to biological and biochemical systems have not only given great insight into how these systems function, but also have lent enough predictive power to aid in the forward-engineering of synthetic constructs. However, progress has been impeded by several modes of context-dependence unique to biological and biochemical systems that are not seen in traditional engineering disciplines, resulting in the need for lengthy design-build-test cycles before functional prototypes are generated.In this work, two of these universal modes of context dependence – resource competition and growth feedback –their effects on synthetic gene circuits and potential control mechanisms, are studied and characterized. Results demonstrate that a novel competitive control architecture can be utilized to mitigate the effects of winner-take-all resource competition (a form of context dependence where distinct gene modules influence each other by competing over a shared pool of transcriptional/translational resources) in synthetic gene circuits and restore circuits to their intended function. Application of the fluctuation-dissipation theorem and rigorous stochastic simulations demonstrate that realistic resource constraints present in cells at the transcriptional and translational levels influence noise in gene circuits in a nonmonotonic fashion, either increasing or decreasing noise depending on the transcriptional/translational capacity. Growth feedback on the other hand links circuit function to cellular growth rate via increased protein dilution rate during exponential growth phase. This in turn can result in the collapse of bistable gene circuits as the accelerated dilution rate forces switches in a high stable state to fall to a low stable state. Mathematical modelling and experimental data demonstrate that application of repressive links can insulate sensitive parts of gene circuits against growth-fluctuations and can in turn increase the robustness of multistable circuits in growth contexts. The results presented in this work aid in the accumulation of understanding of biological and biochemical context dependence, and corresponding control strategies and design principles engineers can utilize to mitigate these effects.
Date Created
2023
Agent

Modeling Brain Cancer Progression Using Reaction-Diffusion Equations with Minimal Parameters

187847-Thumbnail Image.png
Description
A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that

A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The numerical portion of this work (chapter 2) focuses on simulating GBM expansion in patients undergoing treatment for recurrence of tumor following initial surgery. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor contains at least 40 percent of the volume of the observed tumor. In the analytical portion of the paper (chapters 3 and 4), a positively invariant region for our 2-population model is identified. Then, a rigorous derivation of the critical patch size associated with the model is performed. The critical patch (KISS) size is the minimum habitat size needed for a population to survive in a region. Habitats larger than the critical patch size allow a population to persist, while smaller habitats lead to extinction. The critical patch size of the 2-population model is consistent with that of the Fisher-Kolmogorov-Petrovsky-Piskunov equation, one of the first reaction-diffusion models proposed for GBM. The critical patch size may indicate that GBM tumors have a minimum size depending on the location in the brain. A theoretical relationship between the size of a GBM tumor at steady-state and its maximum cell density is also derived, which has potential applications for patient-specific parameter estimation based on magnetic resonance imaging data.
Date Created
2023
Agent

Construction of Synthetic Microbial Consortia for Modeling Ecological Systems

171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
Date Created
2022
Agent

Interrogating Models in Population Dynamics Through a Behavioral Kinetic Lens

171611-Thumbnail Image.png
Description
There is a need in the ecology literature to have a discussion about the fundamental theories from which population dynamics arises. Ad hoc model development is not uncommon in the field often as a result of a need to publish

There is a need in the ecology literature to have a discussion about the fundamental theories from which population dynamics arises. Ad hoc model development is not uncommon in the field often as a result of a need to publish rapidly and frequently. Ecologists and statisticians like Robert J. Steidl and Kenneth P Burnham have called for a more deliberative approach they call "hard thinking". For example, the phenomena of population growth can be captured by almost any sigmoid function. The question of which sigmoid function best explains a data set cannot be answered meaningfully by statistical regression since that can only speak to the validity of the shape. There is a need to revisit enzyme kinetics and ecological stoichiometry to properly justify basal model selection in ecology. This dissertation derives several common population growth models from a generalized equation. The mechanistic validity of these models in different contexts is explored through a kinetic lens. The behavioral kinetic framework is then put to the test by examining a set of biologically plausible growth models against the 1968-1995 elk population count data for northern Yellowstone. Using only this count data, the novel Monod-Holling growth model was able to accurately predict minimum viable population and life expectancy despite both being exogenous to the model and data set. Lastly, the elk/wolf data from Yellowstone was used to compare the validity of the Rosenzweig-MacArthur and Arditi-Ginzburg models. They both were derived from a more general model which included both predator and prey mediated steps. The Arditi-Ginzburg model was able to fit the training data better, but only the Rosenzweig-MacArthur model matched the validation data. Accounting for animal sexual behavior allowed for the creation of the Monod-Holling model which is just as simple as the logistic differential equation but provides greater insights for conservation purposes. Explicitly acknowledging the ethology of wolf predation helps explain the differences in predictive performances by the best fit Rosenzweig-MacArthur and Arditi-Ginzburg models. The behavioral kinetic framework has proven to be a useful tool, and it has the ability to provide even further insights going forward.
Date Created
2022
Agent

Emergent Dynamics Arising from the Feedback Between Synthetic Gene Circuit and Host Cell Growth

171416-Thumbnail Image.png
Description
The mutual inhibition between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback has an marked impact on the molecular dynamics of the host-circuit system. However, the complexity

The mutual inhibition between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback has an marked impact on the molecular dynamics of the host-circuit system. However, the complexity of the growth feedback effect is not fully understood. A theoretical framework was developed to study the dynamics of the coupling between growth feedback and synthetic gene circuits. The study’s results reveal three major points about the impact of growth feedback. First, a nonlinear emergent behavior mediated by growth feedback. The unexpected behavior depends on the dynamic ribosome allocation between gene circuit expression and host cell growth. Second, the emergence and loss of unexpected qualitative states on the host-circuit system generated by ultrasensitive growth feedback. Third, the growth feedback-induced cooperativity behavior in synthetic gene modules competing for resources. In addition, growth feedback attenuated the winner-takes-all rules on resource competition between the two self-activating modules. These results demonstrate that growth feedback plays an important role in the host-circuit system’s molecular dynamics. Characterizing general principles from the effect of growth facilitates the ability to minimize or even harness unexpected gene expression behaviors derived from the effect of growth feedback.
Date Created
2022
Agent

Spatial Temporal Patterning and Dynamics of E. Coli Growth with Nutrient Variation

161972-Thumbnail Image.png
Description
Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not

Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more timely and underexplored problems. In SB's entire history, mathematical modeling has always been an indispensable approach to predict the experimental outcomes, improve experimental design and obtain mechanism-understanding of the biological systems. \textit{Escherichia coli} (\textit{E. coli}) is one of the most important experimental platforms, its growth dynamics is the major research objective in this dissertation. Chapter 2 employs a reaction-diffusion model to predict the \textit{E. coli} colony growth on a semi-solid agar plate under multiple controls. In that chapter, a density-dependent diffusion model with non-monotonic growth to capture the colony's non-linear growth profile is introduced. Findings of the new model to experimental data are compared and contrasted with those from other proposed models. In addition, the cross-sectional profile of the colony are computed and compared with experimental data. \textit{E. coli} colony is also used to perform spatial patterns driven by designed gene circuits. In Chapter 3, a gene circuit (MINPAC) and its corresponding pattern formation results are presented. Specifically, a series of partial differential equation (PDE) models are developed to describe the pattern formation driven by the MINPAC circuit. Model simulations of the patterns based on different experimental conditions and numerical analysis of the models to obtain a deeper understanding of the mechanisms are performed and discussed. Mathematical analysis of the simplified models, including traveling wave analysis and local stability analysis, is also presented and used to explore the control strategies of the pattern formation. The interaction between the gene circuit and the host \textit{E. coli} may be crucial and even greatly affect the experimental outcomes. Chapter 4 focuses on the growth feedback between the circuit and the host cell under different nutrient conditions. Two ordinary differential equation (ODE) models are developed to describe such feedback with nutrient variation. Preliminary results on data fitting using both two models and the model dynamical analysis are included.
Date Created
2021
Agent

Prostate Cancer Modeling: Exploring a Path from Theory and Practice

161970-Thumbnail Image.png
Description
The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this

The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this context, clinical observations form the bridge between the mathematical frameworks and applications. However, the formulation and theoretical studies of the models and the clinical studies are often not completely compatible, which is one of the main obstacles in the application of mathematical models in practice. The goal of my study is to extend a mathematical framework to model prostate cancer based mainly on the concept of cell-quota within an evolutionary framework and to study the relevant aspects for the model to gain useful insights in practice. Specifically, the first aim is to construct a mathematical model that can explain and predict the observed clinical data under various treatment combinations. The second aim is to find a fundamental model structure that can capture the dynamics of cancer progression within a realistic set of data. Finally, relevant clinical aspects such as how the patient's parameters change over the course of treatment and how to incorporate treatment optimization within a framework of uncertainty quantification, will be examined to construct a useful framework in practice.
Date Created
2021
Agent