155261-Thumbnail Image.png
Description
Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure

Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a region of interest. The need for high temporal resolution to measure contrast agent dynamics limits the spatial coverage of perfusion parameter maps which limits the utility of DSC-perfusion studies in pathologies involving the entire brain. Typical clinical DSC-perfusion studies are capable of acquiring 10-15 slices, generally centered on a known lesion or pathology.

The methods developed in this work improve the spatial coverage of whole-brain DSC-MRI by combining a highly efficient 3D spiral k-space trajectory with Generalized Autocalibrating Partial Parallel Acquisition (GRAPPA) parallel imaging without increasing temporal resolution. The proposed method is capable of acquiring 30 slices with a temporal resolution of under 1 second, covering the entire cerebrum with isotropic spatial resolution of 3 mm. Additionally, the acquisition method allows for correction of T1-enhancing leakage effects by virtue of collecting two echoes, which confound DSC perfusion measurements. The proposed DSC-perfusion method results in high quality perfusion parameter maps across a larger volume than is currently available with current clinical standards, improving diagnostic utility of perfusion MRI methods, which ultimately improves patient care.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Improved spatial coverage of high-temporal resolution dynamic susceptibility contrast-MRI through 3D spiral-based acquisition and parallel imaging
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2017
    • bibliography
      Includes bibliographical references (pages 118-124)
    • Field of study: Bioengineering

    Citation and reuse

    Statement of Responsibility

    by Dallas C. Turley

    Machine-readable links