\begin{abstract}The human immunodeficiency virus (HIV) pandemic, which causes the syndrome of opportunistic infections that characterize the late stage HIV disease, known as the acquired immunodeficiency syndrome (AIDS), remains a major public health challenge to many parts of the world. This…
\begin{abstract}The human immunodeficiency virus (HIV) pandemic, which causes the syndrome of opportunistic infections that characterize the late stage HIV disease, known as the acquired immunodeficiency syndrome (AIDS), remains a major public health challenge to many parts of the world. This dissertation contributes in providing deeper qualitative insights into the transmission dynamics and control of the HIV/AIDS disease in Men who have Sex with Men (MSM) community. A new mathematical model (which is relatively basic), which incorporates some of the pertinent aspects of HIV epidemiology and immunology and fitted using the yearly new case data of the MSM population from the State of Arizona, was designed and used to assess the population-level impact of awareness of HIV infection status and condom-based intervention, on the transmission dynamics and control of HIV/AIDS in an MSM community. Conditions for the existence and asymptotic stability of the various equilibria ofthe model were derived. The numerical simulations showed that the prospects for the effective control and/or elimination of HIV/AIDS in the MSM community in the United States are very promising using a condom-based intervention, provided the condom efficacy is high and the compliance is moderate enough. The model was extended in Chapter 3 to account for the effect of risk-structure, staged-progression property of HIV disease, and the use of pre-exposure prophylaxis (PrEP) on the spread and control of the disease. The model was shown to undergo a PrEP-induced \textit{backward bifurcation} when the associated control reproduction number is less than one. It was shown that when the compliance in PrEP usage is $50%(80%)$ then about $19.1%(34.2%)$ of the yearly new HIV/AIDS cases recorded at the peak will have been prevented, in comparison to the worst-case scenario where PrEP-based intervention is not implemented in the MSM community. It was also shown that the HIV pandemic elimination is possible from the MSM community even for the scenario when the effective contact rate is increased by 5-fold from its baseline value, if low-risk individuals take at least 15 years before they change their risky behavior and transition to the high-risk group (regardless of the value of the transition rate from high-risk to low-risk susceptible population).
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that…
A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The numerical portion of this work (chapter 2) focuses on simulating GBM expansion in patients undergoing treatment for recurrence of tumor following initial surgery. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor contains at least 40 percent of the volume of the observed tumor. In the analytical portion of the paper (chapters 3 and 4), a positively invariant region for our 2-population model is identified. Then, a rigorous derivation of the critical patch size associated with the model is performed. The critical patch (KISS) size is the minimum habitat size needed for a population to survive in a region. Habitats larger than the critical patch size allow a population to persist, while smaller habitats lead to extinction. The critical patch size of the 2-population model is consistent with that of the Fisher-Kolmogorov-Petrovsky-Piskunov equation, one of the first reaction-diffusion models proposed for GBM. The critical patch size may indicate that GBM tumors have a minimum size depending on the location in the brain. A theoretical relationship between the size of a GBM tumor at steady-state and its maximum cell density is also derived, which has potential applications for patient-specific parameter estimation based on magnetic resonance imaging data.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Electrical stimulation of the human peripheral nervous system can be a powerful tool to treat various medical conditions and provide insight into nervous system processes. A critical challenge for many applications is to selectively activate neurons that have the desired…
Electrical stimulation of the human peripheral nervous system can be a powerful tool to treat various medical conditions and provide insight into nervous system processes. A critical challenge for many applications is to selectively activate neurons that have the desired effect while avoiding the activation of neurons that produce side effects. To stimulate peripheral fibers, the longitudinal intrafascicular electrode (LIFE) targets small groups of fibers inside the fascicle using low-amplitude pulses and is well-suited for chronic use. This work aims to understand better the ability to use intrafascicular stimulation with LIFEs to activate small groups of neurons within a fascicle selectively.A hybrid workflow was developed to simulate: 1) the production/propagation of the electric field induced by the stimulation pulse and 2) the effect of the electric field on fiber activation (recruitment). To create efficient and robust strategies for the selective recruitment of axons, recognizing the effect of each parameter on their recruitment and activation pattern is essential. Thus, using this hybrid workflow, the effects of various factors such as fascicular anatomy, electrode parameters, and stimulation pulse parameters on recruitment have been characterized, and the sensitivity of the recruitment patterns to these parameters has been explored.
Results demonstrated the potential advantages of specific stimulation strategies and the sensitivity of recruitment patterns to electrode placement and tissue properties. For example, it is demonstrated: the significant effect of endoneurium conductivities on threshold levels; that a configuration with a LIFE as a local ground can be used to deselect its surrounding axons; the advantages of changing the delay between pulses in dual monopolar stimulation in targeting different axons clusters and increasing the activation frequency of some axons; how monopolar and bipolar configurations can be used to enhance spatial selectivity; the effect of longitudinal displacement of axons, electrode length and electrode movement on the recruitment and the activation pattern. In summary, this work forms the foundation for developing stimulation strategies to enhance the selectivity that can be achieved with intrafascicular stimulation.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A leading crisis in the United States is the opioid use disorder (OUD) epidemic. Opioid overdose deaths have been increasing, with over 100,000 deaths due to overdose from April 2020 to April 2021. This dissertation presents two mathematical models to…
A leading crisis in the United States is the opioid use disorder (OUD) epidemic. Opioid overdose deaths have been increasing, with over 100,000 deaths due to overdose from April 2020 to April 2021. This dissertation presents two mathematical models to address illicit OUD (IOUD), treatment, and recovery within an epidemiological framework. In the first model, individuals remain in the recovery class unless they relapse. Due to the limited availability of specialty treatment facilities for individuals with OUD, a saturation treat- ment function was incorporated. The second model is an extension of the first, where a casual user class and its corresponding specialty treatment class were added. Using U.S. population data, the data was scaled to a population of 200,000 to find parameter estimates. While the first model used the heroin-only dataset, the second model used both the heroin and all-illicit opioids datasets. Backward bifurcation was found in the first IOUD model for realistic parameter values. Additionally, bistability was observed in the second IOUD model with the heroin-only dataset. This result implies that it would be beneficial to increase the availability of treatment. An alarming effect was discovered about the high overdose death rate: by 2038, the disease-free equilibrium would be the only stable equilibrium. This consequence is concerning because although the goal is for the epidemic to end, it would be preferable to end it through treatment rather than overdose. The IOUD model with a casual user class, its sensitivity results, and the comparison of parameters for both datasets, showed the importance of not overlooking the influence that casual users have in driving the all-illicit opioid epidemic. Casual users stay in the casual user class longer and are not going to treatment as quickly as the users of the heroin epidemic. Another result was that the users of the all-illicit opioids were going to the recovered class by means other than specialty treatment. However, the relapse rates for those individuals were much more significant than in the heroin-only epidemic. The results above from analyzing these models may inform health and policy officials, leading to more effective treatment options and prevention efforts.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Theoretical analyses of liquid atomization (bulk to droplet conversion) and turbulence have potential to advance the computability of these flows. Instead of relying on full computations or models, fundamental conservation equations can be manipulated to generate partial or full solutions.…
Theoretical analyses of liquid atomization (bulk to droplet conversion) and turbulence have potential to advance the computability of these flows. Instead of relying on full computations or models, fundamental conservation equations can be manipulated to generate partial or full solutions. For example, integral form of the mass and energy for spray flows leads to an explicit relationship between the drop size and liquid velocities. This is an ideal form to integrate with existing computational fluid dynamic (CFD), which is well developed to solve for the liquid velocities, i.e., the momentum equation(s). Theoretical adaption to CFD has been performed for various injection geometries, with results that compare quite well with experimental data. Since the drop size is provided analytically, computational time/cost for simulating spray flows with liquid atomization is no more than single-phase flows. Some advances have also been made on turbulent flows, by using a new set of perspectives on transport, scaling and energy distributions. Conservation equations for turbulence momentum and kinetic energy have been derived in a coordinate frame moving with the local mean velocities, which produce the Reynolds stress components, without modeling. Scaling of the Reynolds stress is also found at the first- and second-gradient levels. Finally, maximum-entropy principle has been used to derive the energy spectra in turbulent flows.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Recent experimental and mathematical work has shown the interdependence of the rod and cone photoreceptors with the retinal pigment epithelium in maintaining sight. Accelerated intake of glucose into the cones via the theoredoxin-like rod-derived cone viability factor (RdCVF) is…
Recent experimental and mathematical work has shown the interdependence of the rod and cone photoreceptors with the retinal pigment epithelium in maintaining sight. Accelerated intake of glucose into the cones via the theoredoxin-like rod-derived cone viability factor (RdCVF) is needed as aerobic glycolysis is the primary source of energy production. Reactive oxidative species (ROS) result from the rod and cone metabolism and recent experimental work has shown that the long form of RdCVF (RdCVFL) helps mitigate the negative effects of ROS. In this work I investigate the role of RdCVFL in maintaining the health of the photoreceptors. The results of this mathematical model show the necessity of RdCVFL and also demonstrate additional stable modes that are present in this system. The sensitivity analysis shows the importance of glucose uptake, nutrient levels, and ROS mitigation in maintaining rod and cone health in light-damaged mouse models. Together, these suggest areas on which to focus treatment in order to prolong the photoreceptors, especially in situations where ROS is a contributing factor to their death such as retinitis pigmentosa (RP). A potential treatment with RdCVFL and its effects has never been studied in mathematical models. In this work, I examine an optimal control with the treatment of RdCVFL and mathematically illustrate the potential that this treatment might have for treating degenerative retinal diseases such as RP. Further, I examine optimal controls with the treatment of both RdCVF and RdCVFL in order to mathematically understand the potential that a dual treatment might have for treating degenerative retinal diseases such as RP. The RdCVFL control terms are nonlinear for biological accuracy but this results in the standard general theorems for existence of optimal controls failing to apply. I then linearize these models to have proof of existence of an optimal control. Both nonlinear and linearized control results are compared and reveal similarly substantial savings rates for rods and cones.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The purpose of this thesis is to accurately simulate in 3D the HH901 jet in the Mystic Mountain Formation of the Carina Nebula. Astronomers present a narrow-band Wide Field Camera image of Carina and the morphology of some astrophysical jets,…
The purpose of this thesis is to accurately simulate in 3D the HH901 jet in the Mystic Mountain Formation of the Carina Nebula. Astronomers present a narrow-band Wide Field Camera image of Carina and the morphology of some astrophysical jets, including HH901. The simulation attempts to replicate features of the jet, among which are pulses, bow shock, terminal Mach disk, and Kelvin-Helmholtz rollup. We use the gas dynamical equations to solve for density, velocity, and temperature. The numerical methods used to solve the equations are third-order WENO (weighted essentially non-oscillatory) and third-order Runge-Kutta. Graphs of density and radiative cooling demonstrate the effect of adding wind (nonzero ambient velocity). The paper discusses the altering of the ambient velocity and final time to fit the shape of the jet in the Hubble image. The suggested next steps are simulating the other HH901 jet and comparing the jets’ atomic makeups to advance understanding of astrophysical jets.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Patients suffering from Retinitis Pigmentosa (RP), the most common type of inherited retinal degeneration, experience irreversible vision loss due to photoreceptor degeneration. The preservation of cone photoreceptors has been deemed medically relevant as a therapy aimed at preventing blindness in…
Patients suffering from Retinitis Pigmentosa (RP), the most common type of inherited retinal degeneration, experience irreversible vision loss due to photoreceptor degeneration. The preservation of cone photoreceptors has been deemed medically relevant as a therapy aimed at preventing blindness in patients with RP. Cones rely on aerobic glycolysis to supply the metabolites necessary for outer segment (OS) renewal and maintenance. The rod-derived cone viability factor (RdCVF), a protein secreted by the rod photoreceptors that preserves the cones, accelerates the flow of glucose into the cone cell stimulating aerobic glycolysis. This dissertation presents and analyzes ordinary differential equation (ODE) models of cellular and molecular level photoreceptor interactions in health and disease to examine mechanisms leading to blindness in patients with RP.
First, a mathematical model composed of four ODEs is formulated to investigate the progression of RP, accounting for the new understanding of RdCVF’s role in enhancing cone survival. A mathematical analysis is performed, and stability and bifurcation analyses are used to explore various pathways to blindness. Experimental data are used for parameter estimation and model validation. The numerical results are framed in terms of four stages in the progression of RP. Sensitivity analysis is used to determine mechanisms that have a significant affect on the cones at each stage of RP. Utilizing a non-dimensional form of the RP model, a numerical bifurcation analysis via MATCONT revealed the existence of stable limit cycles at two stages of RP.
Next, a novel eleven dimensional ODE model of molecular and cellular level interactions is described. The subsequent analysis is used to uncover mechanisms that affect cone photoreceptor functionality and vitality. Preliminary simulations show the existence of oscillatory behavior which is anticipated when all processes are functioning properly. Additional simulations are carried out to explore the impact of a reduction in the concentration of RdCVF coupled with disruption in the metabolism associated with cone OS shedding, and confirms cone-on-rod reliance. The simulation results are compared with experimental data. Finally, four cases are considered, and a sensitivity analysis is performed to reveal mechanisms that significantly impact the cones in each case.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Immunotherapy has received great attention recently, as it has become a powerful tool in fighting certain types of cancer. Immunotherapeutic drugs strengthen the immune system's natural ability to identify and eradicate cancer cells. This work focuses on immune checkpoint inhibitor…
Immunotherapy has received great attention recently, as it has become a powerful tool in fighting certain types of cancer. Immunotherapeutic drugs strengthen the immune system's natural ability to identify and eradicate cancer cells. This work focuses on immune checkpoint inhibitor and oncolytic virus therapies. Immune checkpoint inhibitors act as blocking mechanisms against the binding partner proteins, enabling T-cell activation and stimulation of the immune response. Oncolytic virus therapy utilizes genetically engineered viruses that kill cancer cells upon lysing. To elucidate the interactions between a growing tumor and the employed drugs, mathematical modeling has proven instrumental. This dissertation introduces and analyzes three different ordinary differential equation models to investigate tumor immunotherapy dynamics.
The first model considers a monotherapy employing the immune checkpoint inhibitor anti-PD-1. The dynamics both with and without anti-PD-1 are studied, and mathematical analysis is performed in the case when no anti-PD-1 is administrated. Simulations are carried out to explore the effects of continuous treatment versus intermittent treatment. The outcome of the simulations does not demonstrate elimination of the tumor, suggesting the need for a combination type of treatment.
An extension of the aforementioned model is deployed to investigate the pairing of an immune checkpoint inhibitor anti-PD-L1 with an immunostimulant NHS-muIL12. Additionally, a generic drug-free model is developed to explore the dynamics of both exponential and logistic tumor growth functions. Experimental data are used for model fitting and parameter estimation in the monotherapy cases. The model is utilized to predict the outcome of combination therapy, and reveals a synergistic effect: Compared to the monotherapy case, only one-third of the dosage can successfully control the tumor in the combination case.
Finally, the treatment impact of oncolytic virus therapy in a previously developed and fit model is explored. To determine if one can trust the predictive abilities of the model, a practical identifiability analysis is performed. Particularly, the profile likelihood curves demonstrate practical unidentifiability, when all parameters are simultaneously fit. This observation poses concerns about the predictive abilities of the model. Further investigation showed that if half of the model parameters can be measured through biological experimentation, practical identifiability is achieved.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Cancer is a worldwide burden in every aspect: physically, emotionally, and financially. A need for innovation in cancer research has led to a vast interdisciplinary effort to search for the next breakthrough. Mathematical modeling allows for a unique look into…
Cancer is a worldwide burden in every aspect: physically, emotionally, and financially. A need for innovation in cancer research has led to a vast interdisciplinary effort to search for the next breakthrough. Mathematical modeling allows for a unique look into the underlying cellular dynamics and allows for testing treatment strategies without the need for clinical trials. This dissertation explores several iterations of a dendritic cell (DC) therapy model and correspondingly investigates what each iteration teaches about response to treatment.
In Chapter 2, motivated by the work of de Pillis et al. (2013), a mathematical model employing six ordinary differential (ODEs) and delay differential equations (DDEs) is formulated to understand the effectiveness of DC vaccines, accounting for cell trafficking with a blood and tumor compartment. A preliminary analysis is performed, with numerical simulations used to show the existence of oscillatory behavior. The model is then reduced to a system of four ODEs. Both models are validated using experimental data from melanoma-induced mice. Conditions under which the model admits rich dynamics observed in a clinical setting, such as periodic solutions and bistability, are established. Mathematical analysis proves the existence of a backward bifurcation and establishes thresholds for R0 that ensure tumor elimination or existence. A sensitivity analysis determines which parameters most significantly impact the reproduction number R0. Identifiability analysis reveals parameters of interest for estimation. Results are framed in terms of treatment implications, including effective combination and monotherapy strategies.
In Chapter 3, a study of whether the observed complexity can be represented with a simplified model is conducted. The DC model of Chapter 2 is reduced to a non-dimensional system of two DDEs. Mathematical and numerical analysis explore the impact of immune response time on the stability and eradication of the tumor, including an analytical proof of conditions necessary for the existence of a Hopf bifurcation. In a limiting case, conditions for global stability of the tumor-free equilibrium are outlined.
Lastly, Chapter 4 discusses future directions to explore. There still remain open questions to investigate and much work to be done, particularly involving uncertainty analysis. An outline of these steps is provided for future undertakings.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)