Shedding Light on Atomistic Structures of Defects in Polycrystalline Thin-Film Solar Cells via Simulated X-ray Absorption Spectroscopy

193671-Thumbnail Image.png
Description
In polycrystalline thin-film cadmium telluride (CdTe) solar cells, atomic defects (dopants: copper (Cu), arsenic (As); and selenium (Se) alloy) have significantly enhanced hole density and minority carrier lifetime. Density functional theory (DFT) has predicted the atomic configurations of relevant defects

In polycrystalline thin-film cadmium telluride (CdTe) solar cells, atomic defects (dopants: copper (Cu), arsenic (As); and selenium (Se) alloy) have significantly enhanced hole density and minority carrier lifetime. Density functional theory (DFT) has predicted the atomic configurations of relevant defects and their electronic structures. Yet, experimental evidence of the defects, especially their spatial distribution across the absorber, is still lacking. Herein, since it can probe local atomic structure of elements of interest with trace-elemental sensitivity, nanoprobe X-ray absorption near edge structure (XANES) spectroscopy was used to elucidate atomic structures of Cu, As, and Se. After XANES spectra were measured from CdTe devices, the atomic information was extracted from the measured spectra by fitting them with reference spectra, which were simulated from 1) point defects and grain boundaries (GBs) predicted by DFT; 2) secondary phases which could form under processing conditions. XANES analysis of various device architectures revealed structural inhomogeneities across the absorbers from point defects to secondary phases. The majority of the Cu dopant atoms form secondary phases with surrounding atoms even inside the absorbers, explaining the low dopant activation. When entering the target lattice site (Cd), Cu forms a complex with chlorine (Cl) and becomes a donor defect, compensating hole density. Compared to Cu, As dopant tends to enter the target site (Te) more frequently, explaining higher hole density in As-doped CdTe. Notably, As on the Te site forms neutral charged complexes with Cl. Although they are not as detrimental as the Cu-Cl complex, the As-Cl complexes may be responsible for low dopant activation and compensation observed in As-doped CdTe devices. Complementary to the DFT prediction, this work provided the distribution of Se local structures across the absorber, specifically the variation of Se-Cd bond lengths in differently performing areas. Under environmental stressors (heat and light), it showed atomic reconfiguration of Se and Cl at GBs, and Se diffusion into the bulk, co-occurring with device degradation. This framework was also extended to study defect evolution in other thin-film solar cells (CIGS and emerging perovskite). XANES analysis has shed light on atomic defects governing solar cell performance and stability, which are crucial in pushing the efficiency toward the theoretical efficiency limit.
Date Created
2024
Agent

Silicon Thin-film Contacts to Crystalline Silicon Solar Cells

191029-Thumbnail Image.png
Description
The application of silicon thin films in solar cells has evolved from their use in amorphous silicon solar cells to their use as passivating and carrier-selective contacts in crystalline silicon solar cells. Their use as carrier-selective contacts has enabled crystalline

The application of silicon thin films in solar cells has evolved from their use in amorphous silicon solar cells to their use as passivating and carrier-selective contacts in crystalline silicon solar cells. Their use as carrier-selective contacts has enabled crystalline silicon solar cell efficiencies above 26%, just 3% shy of the theoretical efficiency limit. The two cell architectures that have exceeded 26% are the silicon heterojunction and tunnel oxide passivating contact cell. These two cell architectures use two different forms of silicon thin films. In the case of the silicon heterojunction, the crystalline wafer is sandwiched between layers of intrinsic amorphous silicon, which acts as the passivation layer, and doped amorphous silicon, which acts as the carrier-selective layer. On the other hand, the tunnel oxide passivating contact cell uses a thin silicon oxide passivation layer and a doped polycrystalline silicon layer as the carrier-selective layer. Both cell structures have their distinct advantages and disadvantages when it comes to production. The processing of the silicon heterojunction relies on a low thermal budget and leads to high open-circuit voltages, but the cost of high-vacuum processing equipment presents a major hurdle for industrial scale production while the tunnel oxide passivating contact can be easily integrated into current industrial lines, yet it requires a higher thermal budgets and does not produce as high of an open-circuit voltage as the silicon heterojunction. This work focuses on using both forms of silicon thin films applied as passivating and carrier-selective contacts to crystalline silicon thin films.First, a thorough analysis of the series resistivity in silicon heterojunction solar cells is conducted. In particular, variations in the thickness and doping of the individual ii contact layers are performed to reveal their effect on the contact resistivity and in turn the total series resistivity of the cell. Second, a tunnel oxide passivated contact is created using a novel deposition method for the silicon oxide layer. A 21% efficient proof-of-concept device is presented demonstrating the potential of this deposition method. Finally, recommendations to further improve the efficiency of these cells is presented.
Date Created
2023
Agent

Assessing the Impact of Increased Parameter Modeling of Combustion Turbines in a Grid with Varying Renewable Energy Penetration Using PLEXOS

189269-Thumbnail Image.png
Description
As the share of variable renewable energy generation in the power system increases, there is a growing need for flexible resources to balance the resulting variability. Although many systems are transitioning away from fossil fuels, open-cycle gas turbines are likely

As the share of variable renewable energy generation in the power system increases, there is a growing need for flexible resources to balance the resulting variability. Although many systems are transitioning away from fossil fuels, open-cycle gas turbines are likely to fill this balancing role for some time. Accordingly, accurate production cost modeling of the operational parameters of gas turbines will be increasingly crucial as these units are relied on more heavily for flexibility. This thesis explores the impact of three additional parameters—start-up profiles/costs, run-up rates, and forced outage rates—in the production cost modeling of a system as it adopts higher levels of wind and solar. Using PLEXOS simulations of the publicly available National Renewable Energy Laboratory’s 118 bus test system, the study examines how higher the increase in parameter modeling affects outcomes such as the number of start-ups and shut-downs, ramping, total generation costs for open-cycle gas turbines, and system-wide costs in three variable renewable energy penetration scenarios. The outcome of replacing certain conventional generation units with newer and more flexible combustion turbines is also examined. The results suggest the importance of detailed parameter modeling and continued research on the formulation of production cost models for flexible generation resources such as combustion turbines.
Date Created
2023
Agent

Metallization and Interconnection Concerns for Silicon Photovoltaic Cells and Modules

187528-Thumbnail Image.png
Description
The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to

The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to contribute to the development of these innovations to move them closer to commercialization.Shingled PV modules and laser-welded foil-interconnected modules present an alternative to traditional soldered ribbons that can improve module power densities in a cost-effective manner. These two interconnection methods present new technical challenges for the PV industry. This work presents x-ray imaging methods to aid in the process-optimization of the application and curing of the adhesive material used in shingled modules. Further, detailed characterization of laser welds, their adhesion, and their effect on module performances is conducted. A strong correlation is found between the laser-weld adhesion and the modules’ durability through thermocycling. A minimum laser weld adhesion of 0.8 mJ is recommended to ensure a robust interconnection is formed. Detailed characterization and modelling are demonstrated on a 21% efficient double-sided tunnel-oxide passivating contact (DS-TOPCon) cell. This technology uses a novel approach that uses the front-metal grid to etch-away the parasitically-absorbing poly-Si material everywhere except for underneath the grid fingers. The modelling yielded a match to the experimental device within 0.06% absolute of its efficiency. This DS-TOPCon device could be improved to a 23.45%-efficient device by improving the optical performance, n-type contact resistivity, and grid finger aspect ratio. Finally, a modelling approach is explored for simulating Si thermophotovoltaic (TPV) devices. Experimentally fabricated diffused-junction devices are used to validate the optical and electrical aspects of the model. A peak TPV efficiency of 6.8% is predicted for the fabricated devices, but a pathway to 32.5% is explained by reducing the parasitic absorption of the contacts and reducing the wafer thickness. Additionally, the DS-TOPCon technology shows the potential for a 33.7% efficient TPV device.
Date Created
2023
Agent

Advanced Patterning Process Developments for Various Optical Applications

171597-Thumbnail Image.png
Description
Patterning technologies for micro/nano-structures have been essentially used in a variety of discipline research areas, including electronics, optics, material science, and biotechnology. Therefore their importance has dramatically increased over the past decades. This dissertation presents various advanced patterning processes utilizing

Patterning technologies for micro/nano-structures have been essentially used in a variety of discipline research areas, including electronics, optics, material science, and biotechnology. Therefore their importance has dramatically increased over the past decades. This dissertation presents various advanced patterning processes utilizing cross-discipline technologies, e.g., photochemical deposition, transfer printing (TP), and nanoimprint lithography (NIL), to demonstrate inexpensive, high throughput, and scalable manufacturing for advanced optical applications. The polymer-assisted photochemical deposition (PPD) method is employed in the form of additive manufacturing (AM) to print ultra-thin (< 5 nm) and continuous film in micro-scaled (> 6.5 μm) resolution. The PPD film acts as a lossy material in the Fabry-Pérot cavity structures and generates vivid colored images with a micro-scaled resolution by inducing large modulation of reflectance. This PPD-based structural color printing performs without photolithography and vacuum deposition in ambient and room-temperature conditions, which enables an accessible and inexpensive process (Chapter 1). In the TP process, germanium (Ge) is used as the nucleation layer of noble metallic thin films to prevent structural distortion and improve surface morphology. The developed Ge-assisted transfer printing (GTP) demonstrates its feasibility transferring sub-100 nm features with up to 50 nm thickness in a centimeter scale. The GTP is also capable of transferring arbitrary metallic nano-apertures with minimal pattern distortion, providing relatively less expensive, simpler, and scalable manufacturing (Chapter 2). NIL is employed to fabricate the double-layered chiral metasurface for polarimetric imaging applications. The developed NIL process provides multi-functionalities with a single NIL, i.e., spacing layer, planarized surface, and formation of dielectric gratings, respectively, which significantly reduces fabrication processing time and potential cost by eliminating several steps in the conventional fabrication process. During the integration of two metasurfaces, the Moiré fringe based alignment method is employed to accomplish the alignment accuracy of less than 200 nm in both x- and y-directions, which is superior to conventional photolithography. The dramatically improved optical performance, e.g., highly improved circular polarization extinction ratio (CPER), is also achieved with the developed NIL process (Chapter 3).
Date Created
2023
Agent

Correlating Copper Defects to CdTe Solar Cell Performance Before, During, and After Operation

171372-Thumbnail Image.png
Description
This work correlates microscopic material changes to short- and long-term performance in modern, Cu-doped, CdTe-based solar cells. Past research on short- and long-term performance emphasized the device-scale impact of Cu, but neglected the microscopic impact of the other chemical species

This work correlates microscopic material changes to short- and long-term performance in modern, Cu-doped, CdTe-based solar cells. Past research on short- and long-term performance emphasized the device-scale impact of Cu, but neglected the microscopic impact of the other chemical species in the system (e.g., Se, Cl, Cu), their distributions, their local atomic environments, or their interactions/reactions. Additionally, technological limitations precluded nanoscale measurements of the Cu distributions in the cell, and microscale measurements of the material properties (i.e. composition, microstructure, charge transport) as the cell operates. This research aims to answer (1) what is the spatial distribution of Cu in the cell, (2) how does its distribution and local environment correlate with cell performance, and (3) how do local material properties change as the cell operates? This work employs a multi-scale, multi-modal, correlative-measurement approach to elucidate microscopic mechanisms. Several analytical techniques are used – including and especially correlative synchrotron X-ray microscopy – and a unique state-of-the-art instrument was developed to access the dynamics of microscopic mechanisms as they proceed. The work shows Cu segregates around CdTe grain boundaries, and Cu-related acceptor penetration into the CdTe layer is crucial for well-performing cells. After long-term operation, the work presents strong evidence of Se migration into the CdTe layer. This redistribution correlates with microstructural changes in the CdTe layer and limited charge transport around the metal-CdTe interface. Finally, the work correlates changes in microstructure, Cu atomic environment, and charge collection as a cell operates. The results suggest that, as the cell ages, a change to Cu local environment limits charge transport through the metal-CdTe interface, and this change could be influenced by Se migration into the CdTe layer of the cell.
Date Created
2022
Agent

Study of CdTe/MgCdTe Double-Heterostructure Solar Cells and an Epitaxial Lift-Off Technology for Thin-Film and Tandem Applications

168368-Thumbnail Image.png
Description
CdTe/MgCdTe double heterostructures (DHs) integrated with a heavily-doped a-Si:H layer as the hole contact was demonstrated a record open-circuit voltage (VOC) of 1.11 V and an active-area efficiency of 20% in 2016. Despite this significant progress, some of the underlying

CdTe/MgCdTe double heterostructures (DHs) integrated with a heavily-doped a-Si:H layer as the hole contact was demonstrated a record open-circuit voltage (VOC) of 1.11 V and an active-area efficiency of 20% in 2016. Despite this significant progress, some of the underlying device physics has not been fully understood. The first part of this dissertation reports a systematic study of the CdTe/MgCdTe DH devices. The CdTe/MgCdTe DHs are grown on InSb(001) substrates. The vertical transport mechanisms across the CdTe and InSb heterovalent interface are investigated with N-CdTe/n-InSb and N-CdTe/p-InSb heterostructures. A transport model including tunneling through CdTe barrier and InSb interband transition is developed to explain the different temperature dependent current-voltage characteristics of these two heterostructures. Different p-type layers are integrated with the CdTe/MgCdTe DHs to form solar cells with different VOC values and efficiencies. The low VOC of devices with ZnTe:Cu and ZnTe:As hole contacts is attributed to the low built-in voltage and reduced minority carrier lifetime in the CdTe absorber, respectively. The critical requirements for reaching high VOC values are analyzed. A novel epitaxial lift-off technology for monocrystalline CdTe is developed using a water-soluble and nearly lattice-matched MgTe sacrificial layer grown on InSb substrate. The freestanding CdTe/MgCdTe DH thin films obtained from the lift-off process show improved optical performance due to enhanced light extraction efficiency and photo-recycling effect. This technology enables the possible development of monocrystalline CdTe thin-film solar cells and 1.7/1.1-eV MgCdTe/Si or MgCdTe/Cu(InGa)Se2 tandem solar cells. The monocrystalline CdTe thin-film solar cells and 1.7-eV MgCdTe DH solar cells have been demonstrated with a power conversion efficiency of 9.8% and an active-area efficiency as high as 15.2%, respectively. Additionally, a study of the radiation effects on CdTe DHs under 68-MeV proton irradiation is performed and showed their superior radiation tolerance. All these findings indicate that the monocrystalline CdTe thin-film solar cells are reasonably expected to have low weight, high-efficiency and high power density, ideal for space applications.
Date Created
2021
Agent

In-situ Far Ultraviolet Optical Characterization of Atomic Layer Deposited Oxides and Fluorides

161590-Thumbnail Image.png
Description
In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3,

In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses. Multiple optical calculation methods were developed for the accurate determination of the optical constants from the reflectance. The deduced optical constants were used for optical designs, such as high-reflectivity coatings, and Fabry-Perot bandpass interference filters. Three filters were designed for use at 157 nm, 212 nm, and 248 nm wavelengths, based on multilayer structures consisting of SiO2, Al2O3, HfO2, and AlF3. A thorough error analysis was made to quantify the non-idealities of the optical performance for the designed filters. Far UV spectroscopy was also applied to analyze material mixtures, such as AlF3/Al and h-BN/c-BN mixtures. Using far UV spectroscopy, different phases in the composite can be distinguished, and the volume concentration of each constituent can be determined. A middle UV reflective coating based on A2O3 and AlF3 was fabricated and characterized. The reflective coating has a smooth surface (?? < 1 nm), and a peak reflectance of 25 – 30 % at a wavelength of 196 nm. The peak reflectance deviated from the design, and an analysis of the AlF3 layer prepared by plasma-enhanced atomic layer deposition (PEALD) indicated the presence of Al-rich clusters, which were associated with the UV absorption. Complementary techniques, such as spectroscopic ellipsometry, and X-ray photoelectron spectroscopy, were used to verify the results from far UV spectroscopy. In conclusion, this Dissertation demonstrated the use of in-situ far UV spectroscopy to investigate the optical properties of thin films at short wavelengths. This work extends the application of far UV spectroscopy to ultrawide bandgap semiconductors and insulators. This work supports a path forward for far UV optical filters and devices. Various errors have been discussed with solutions proposed for future research of methods and materials for UV optics.
Date Created
2021
Agent

Growth Modes of Silver-doped Chalcogenide-based Programmable Metallization Cells for Timing Applications

161434-Thumbnail Image.png
Description
This research aims to investigate the material properties of various silver-doped germanium-chalcogenide thin films that novel lateral Programmable Metallization Cell (PMC) devices are based on. These devices are governed by a solid-state electrochemical reaction that is controlled electrically occurring at

This research aims to investigate the material properties of various silver-doped germanium-chalcogenide thin films that novel lateral Programmable Metallization Cell (PMC) devices are based on. These devices are governed by a solid-state electrochemical reaction that is controlled electrically occurring at the micro and nanoscale.By using various electrical and optical characterization techniques, useful material characteristics such as the activation energy of electrodeposit growth rate and bandgap energy can be extracted. These parameters allow for better tuning of these materials for more specific PMC device applications, such as a timer that can be placed into integrated circuits for metering and anticounterfeiting purposes. The compositions of focus are silver-doped germanium-selenide and germanium-sulfide variations; overall, the bandgap energy of these materials decreases as silver content is increased, the activation energy tends to be smaller in sulfide-based devices, and chalcogenides highly doped with silver exhibit nanocluster migration growth modes due to the agglomeration of silver clusters in the film.
Date Created
2021
Agent

Understanding Solar Cell Contacts Through Simulations

158863-Thumbnail Image.png
Description
The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which

The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which are limited in performance by increased non-radiative recombination in the doped regions. This limitation can be overcome through the use of passivating contacts, which prevent recombination at the absorber interfaces while providing the selectivity to efficiently separate the charge carriers generated in the absorber. This thesis aims at developing an understanding of how the material properties of the contact affect device performance through simulations.The partial specific contact resistance framework developed by Onno et al. aims to link material behavior to device performance specifically at open circuit. In this thesis, the framework is expanded to other operating points of a device, leading to a model for calculating the partial contact resistances at any current flow. The error in calculating these resistances is irrelevant to device performance resulting in an error in calculating fill factor from resistances below 0.1% when the fill factors of the cell are above 70%, i.e., for cells with good passivation and selectivity.
Further, silicon heterojunction (SHJ) and tunnel-oxide based solar cells are simulated in 1D finite-difference modeling package AFORS-HET. The effects of material property changes on device performance are investigated using novel contact materials like Al0.8Ga0.2As (hole contact for SHJ) and ITO (electron contact for tunnel-oxide cells). While changing the bandgap and electron affinity of the contact affect the height of the Schottky barrier and hence contact resistivity, increasing the doping of the contact will increase its selectivity. In the case of ITO, the contact needs to have a work function below 4.2 eV to be electron selective, which suggests that other low work function TCOs (like AZO) will be more applicable as alternative dopant-free electron contacts. The AFORS-HET model also shows that buried doped regions arising from boron diffusion in the absorber can damage passivation and decrease the open circuit voltage of the device.
Date Created
2020
Agent