Description
CdTe/MgCdTe double heterostructures (DHs) integrated with a heavily-doped a-Si:H layer as the hole contact was demonstrated a record open-circuit voltage (VOC) of 1.11 V and an active-area efficiency of 20% in 2016. Despite this significant progress, some of the underlying device physics has not been fully understood. The first part of this dissertation reports a systematic study of the CdTe/MgCdTe DH devices. The CdTe/MgCdTe DHs are grown on InSb(001) substrates. The vertical transport mechanisms across the CdTe and InSb heterovalent interface are investigated with N-CdTe/n-InSb and N-CdTe/p-InSb heterostructures. A transport model including tunneling through CdTe barrier and InSb interband transition is developed to explain the different temperature dependent current-voltage characteristics of these two heterostructures.
Different p-type layers are integrated with the CdTe/MgCdTe DHs to form solar cells with different VOC values and efficiencies. The low VOC of devices with ZnTe:Cu and ZnTe:As hole contacts is attributed to the low built-in voltage and reduced minority carrier lifetime in the CdTe absorber, respectively. The critical requirements for reaching high VOC values are analyzed.
A novel epitaxial lift-off technology for monocrystalline CdTe is developed using a water-soluble and nearly lattice-matched MgTe sacrificial layer grown on InSb substrate. The freestanding CdTe/MgCdTe DH thin films obtained from the lift-off process show improved optical performance due to enhanced light extraction efficiency and photo-recycling effect. This technology enables the possible development of monocrystalline CdTe thin-film solar cells and 1.7/1.1-eV MgCdTe/Si or MgCdTe/Cu(InGa)Se2 tandem solar cells. The monocrystalline CdTe thin-film solar cells and 1.7-eV MgCdTe DH solar cells have been demonstrated with a power conversion efficiency of 9.8% and an active-area efficiency as high as 15.2%, respectively. Additionally, a study of the radiation effects on CdTe DHs under 68-MeV proton irradiation is performed and showed their superior radiation tolerance. All these findings indicate that the monocrystalline CdTe thin-film solar cells are reasonably expected to have low weight, high-efficiency and high power density, ideal for space applications.
Details
Title
- Study of CdTe/MgCdTe Double-Heterostructure Solar Cells and an Epitaxial Lift-Off Technology for Thin-Film and Tandem Applications
Contributors
- Ding, Jia (Author)
- Zhang, Yong-Hang (Thesis advisor)
- Vasileska, Dragica (Committee member)
- Johnson, Shane (Committee member)
- Holman, Zachary (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2021
- Field of study: Electrical Engineering