Metallization and Interconnection Concerns for Silicon Photovoltaic Cells and Modules
Description
The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to contribute to the development of these innovations to move them closer to commercialization.Shingled PV modules and laser-welded foil-interconnected modules present an alternative to traditional soldered ribbons that can improve module power densities in a cost-effective manner. These two interconnection methods present new technical challenges for the PV industry. This work presents x-ray imaging methods to aid in the process-optimization of the application and curing of the adhesive material used in shingled modules. Further, detailed characterization of laser welds, their adhesion, and their effect on module performances is conducted. A strong correlation is found between the laser-weld adhesion and the modules’ durability through thermocycling. A minimum laser weld adhesion of 0.8 mJ is recommended to ensure a robust interconnection is formed.
Detailed characterization and modelling are demonstrated on a 21% efficient double-sided tunnel-oxide passivating contact (DS-TOPCon) cell. This technology uses a novel approach that uses the front-metal grid to etch-away the parasitically-absorbing poly-Si material everywhere except for underneath the grid fingers. The modelling yielded a match to the experimental device within 0.06% absolute of its efficiency. This DS-TOPCon device could be improved to a 23.45%-efficient device by improving the optical performance, n-type contact resistivity, and grid finger aspect ratio.
Finally, a modelling approach is explored for simulating Si thermophotovoltaic (TPV) devices. Experimentally fabricated diffused-junction devices are used to validate the optical and electrical aspects of the model. A peak TPV efficiency of 6.8% is predicted for the fabricated devices, but a pathway to 32.5% is explained by reducing the parasitic absorption of the contacts and reducing the wafer thickness. Additionally, the DS-TOPCon technology shows the potential for a 33.7% efficient TPV device.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2023
Agent
- Author (aut): Hartweg, Barry
- Thesis advisor (ths): Holman, Zachary
- Committee member: Chan, Candace
- Committee member: Bertoni, Mariana
- Committee member: Yu, Zhengshan
- Publisher (pbl): Arizona State University