Crystalline silicon covers more than 85% of the global photovoltaics industry and has sustained a nearly 30% year-over-year growth rate. Continued cost and capital expenditure (CAPEX) reductions are needed to sustain this growth. Using thin silicon wafers well below the…
Crystalline silicon covers more than 85% of the global photovoltaics industry and has sustained a nearly 30% year-over-year growth rate. Continued cost and capital expenditure (CAPEX) reductions are needed to sustain this growth. Using thin silicon wafers well below the current industry standard of 160 µm can reduce manufacturing cost, CAPEX, and levelized cost of electricity. Additionally, thinner wafers enable more flexible and lighter module designs, making them more compelling in market segments like building-integrated photovoltaics, portable power, aerospace, and automotive industries. Advanced architectures and superior surface passivation schemes are needed to enable the use of very thin silicon wafers. Silicon heterojunction (SHJ) and SHJ with interdigitated back contact solar cells have demonstrated open-circuit voltages surpassing 720 mV and the potential to surpass 25% conversion efficiency. These factors have led to an increasing interest in exploring SHJ solar cells on thin wafers. In this work, the passivation capability of the thin intrinsic hydrogenated amorphous silicon layer is improved by controlling the deposition temperature and the silane-to-hydrogen dilution ratio. An effective way to parametrize surface recombination is by using surface saturation current density and a very low surface saturation density is achieved on textured wafers for wafer thicknesses ranging between 40 and 180 µm which is an order of magnitude lesser compared to the prevalent industry standards. Implied open-circuit voltages over 760 mV were accomplished on SHJ structures deposited on n-type silicon wafers with thicknesses below 50 µm. An analytical model is also described for a better understanding of the variation of the recombination fractions for varying substrate thicknesses. The potential of using very thin wafers is also established by manufacturing SHJ solar cells, using industrially pertinent processing steps, on 40 µm thin standalone wafers while achieving maximum efficiency of 20.7%. It is also demonstrated that 40 µm thin SHJ solar cells can be manufactured using these processes on large areas. An analysis of the percentage contribution of current, voltage, and resistive losses are also characterized for the SHJ devices fabricated in this work for varying substrate thicknesses.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify…
Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small spherical magnetic particles called magnetic beads are often used in laboratories. Even though magnetic beads have the ability to isolate DNA or RNA from bio-samples in their purified form, integrating these into a microfluidic point-of-need testing kit is still a bit of a challenge. In this thesis, the possibility of integrating paramagnetic beads instead of silica-coated dynabeads, has been evaluated with respect to a point-of-need SARS-CoV-2 virus testing kit. This project is a comparative study between five different sizes of carboxyl-coated paramagnetic beads with reference to silica-coated dynabeads, and how each of them behave in a microcapillary chip in presence of magnetic fields of different strengths. The diameters and velocities of the beads have been calculated using different types of microscopic imaging techniques. The washing and elution steps of an extraction process have been recreated using syringe pump, microcapillary channels and permanent magnets, based on which those parameters of the beads have been studied which are essential for extraction behaviour. The yield efficiency of the beads have also been analysed by using these to extract Salmon DNA. Overall, furthering this research will improve the sensitivity and specificity for any low-cost nucleic-acid based point-of-care testing device.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Unlike conventional solar cells, modern high efficiency passivated contacts solar cells like silicon heterojunction (SHJ) cells have excellent surface passivation and use high bulk lifetime wafers which increase the operating injection level of these devices. These solar cell architectures can…
Unlike conventional solar cells, modern high efficiency passivated contacts solar cells like silicon heterojunction (SHJ) cells have excellent surface passivation and use high bulk lifetime wafers which increase the operating injection level of these devices. These solar cell architectures can benefit from having lower doped substrates, with undoped solar cells becoming an attractive option. There has been very limited literature on high bulk resistivity substrates (>>10 Ωcm). This thesis work provides a comprehensive assessment of the potential of high resistivity/undoped substrates for high performance and more reliable silicon solar cells by demonstrating the results from modeling as well as characterization of SHJ solar cells fabricated with high resistivity/undoped substrates under real-world illumination and temperature conditions that the cells/modules experience in the field. In this work, the results from the analytical model demonstrated the effects of various defects, variation in doping and temperature on the performance of silicon solar cells. Experimentally, SHJ cells with bulk resistivities in the range of 1 Ωcm to >15k Ωcm were fabricated, and cell efficiencies over 20% were measured at standard testing conditions (STC) across the entire range of bulk resistivities. The illumination response (0.1-1 sun) and temperature coefficients (25-90 °C) were shown to be independent of the bulk resistivity. No light induced degradation was observed in the n-type SHJ cells of all resistivity ranges whereas high resistivity p-type SHJ cells showed less degradation compared to that of commercial resistivity range (<10 Ωcm). Very high reverse breakdown voltages (over 1 kV) were demonstrated for SHJ cells fabricated with high resistivity wafers. Using simulation, the importance of having cells in the modules with breakdown voltage higher than the series string voltage for safe and reliable operation of the photovoltaic (PV) system was highlighted.
The ingot yield can be improved by moving towards high resistivity ranges to manufacture high efficiency reliable solar cells by utilizing the entire ingot and eliminating the need to adhere to narrow resistivity range. Thus, the novel findings from this work can have profound impact on ingot and module manufacturing resulting in significant cost savings as well as improvement in the system reliability.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Design and development of optical sensors for the detection of specific targets, e.g., ions, molecules, proteins, light polarizations, is one of the most essential research topics in the field of nanophotonics that paves the way for significant technological progressions in…
Design and development of optical sensors for the detection of specific targets, e.g., ions, molecules, proteins, light polarizations, is one of the most essential research topics in the field of nanophotonics that paves the way for significant technological progressions in chemical and biomarker detections, polarimetric imaging and other sensing related applications. In this dissertation, three designs of optical sensors based on plasmonic and dielectric nanostructures are thoroughly studied for the applications in chemicals, biomarkers and light polarization detection. Firstly, a plasmonic nanoantenna structure, which is composed of complementary anisotropic nanobars and nanoapertures featuring strong localized electric field enhancement at nanogap region, demonstrates both high sensitivity refractometric detection and specific infrared fingerprint detection for chemical sensing. Specifically, the sensor can probe monolayer thin octadecanethiol with a large resonance shift of 136 nm and all four characteristic infrared fingerprints detected. Secondly, a bio-inspired double-layered metasurface structure, which is made of dielectric nanoantenna and plasmonic nanogratings, mediates strong optical chirality and enables the selection of circularly polarized light handedness (extinction ratio ≥ 35) with high transmission efficiency (≥ 80%). The structure can be further integrated on-chip with linear polarizers for highly precise full-Stokes polarimetric detection with minimum transmission loss. Lastly, a gold nanoparticle based colorimetric assay is designed for high sensitivity, specificity and rapid detection of infectious diseases related biomarkers. The complete design workflows from critical reagents productions, rapid detection protocol to assay characterizations are extensively studied. Detection of Ebola virus disease biomarker, secreted glycoprotein, within 20 minutes are experimentally demonstrated with limit of detection down to ~40 pM and a broad detection range from 10 pM to 1 µM.
The designs of the three sensors propose novel and versatile design concepts for the development of sensing devices in the detection of chemicals, biomarkers and light polarization. The efforts in the fundamental theoretical analysis and experimental demonstrations are expected to provide valuable contents to the optical sensor researches and to potentially inspire new sensor designs for broad sensing applications in the future.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This creative project is a part of the work being done as a Senior Design Project in which an autonomous solar charge controller is being developed. The goal of this project is to design and build a prototype of an…
This creative project is a part of the work being done as a Senior Design Project in which an autonomous solar charge controller is being developed. The goal of this project is to design and build a prototype of an autonomous solar charge controller that can work independently of the power grid. This solar charge controller is being built for a community in Monument Valley, Arizona who live off grid. The controller is designed to step down power supplied by an array of solar panels to charge a 48V battery and supply power to an inverter. The charge controller can implement MPPT (Maximum Power Point Tracking) to charge the battery and power the inverter, it also is capable of disconnecting from the battery when the battery is fully charged and reconnecting when it detects that the battery has discharged. The charge controller can also switch from supplying power to the inverter from the panel to supplying power from the battery at low sun or night. These capabilities are not found in solar charge controllers that are on the market. This project aims to achieve all these capabilities and provide a solution for the problems being faced by the current solar charge controller
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
BioMEMS has the potential to provide many future tools for life sciences, combined with microfabrication technologies and biomaterials. Especially due to the recent corona 19 epidemic, interest in BioMEMS technology has increased significantly, and the related research has also grown…
BioMEMS has the potential to provide many future tools for life sciences, combined with microfabrication technologies and biomaterials. Especially due to the recent corona 19 epidemic, interest in BioMEMS technology has increased significantly, and the related research has also grown significantly. The field with the highest demand for BioMEMS devices is in the medical field. In particular, the implantable device field is the largest sector where cutting-edge BioMEMS technology is applied along with nanotechnology, artificial intelligence, genetic engineering, etc. However, implantable devices used for brain diseases are still very limited because unlike other parts of human organs, the brain is still unknow area which cannot be completely replaceable.To date, the most commercially used, almost only, implantable device for the brain is a shunt system for the treatment of hydrocephalus. The current cerebrospinal fluid (CSF) shunt treatment yields high failure rates: ~40% within first 2 years and 98% within 10 years. These failures lead to high hospital admission rates and repeated invasive surgical procedures, along with reduced quality of life. New treatments are needed to improve the disease burden associated with hydrocephalus. In this research, the proposed catheter-free, completely-passive miniaturized valve is designed to alleviate hydrocephalus at the originating site of the disorder and diminish failure mechanisms associated with current treatment methods. The valve is composed of hydrogel diaphragm structure and polymer or glass outer frame which are 100% bio-compatible material. The valve aims to be implanted between the sub-arachnoid space and the superior sagittal sinus to regulate the CSF flow substituting for the obstructed arachnoid granulations. A cardiac pacemaker is one of the longest and most widely used implantable devices and the wireless technology is the most widely used with it for easy acquisition of vital signs and rapid disease diagnosis without clinical surgery. But the conventional pacemakers with some wireless technology face some essential complications associated with finite battery life, ultra-vein pacing leads, and risk of infection from device pockets and leads. To solve these problems, wireless cardiac pacemaker operating in fully-passive modality is proposed and demonstrates the promising potential by realizing a prototype and functional evaluating.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high power consumption, and the need to replace batteries. This thesis…
The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high power consumption, and the need to replace batteries. This thesis aims to alleviate these issues by presenting a series of wireless fully-passive sensors for the acquisition of biosignals: including neuropotential, biopotential, intracranial pressure (ICP), in addition to a stimulator for the pacing of engineered cardiac cells. In contrast to existing wireless biosignal recording systems, the proposed wireless sensors do not contain batteries or high-power electronics such as amplifiers or digital circuitries. Instead, the RFID tag-like sensors utilize a unique radiofrequency (RF) backscattering mechanism to enable wireless and battery-free telemetry of biosignals with extremely low power consumption. This characteristic minimizes the risk of heat-induced tissue damage and avoids the need to use any transcranial/transcutaneous wires, and thus significantly enhances long-term safety and reliability. For neuropotential recording, a small (9mm x 8mm), biocompatible, and flexible wireless recorder is developed and verified by in vivo acquisition of two types of neural signals, the somatosensory evoked potential (SSEP) and interictal epileptic discharges (IEDs). For wireless multichannel neural recording, a novel time-multiplexed multichannel recording method based on an inductor-capacitor delay circuit is presented and tested, realizing simultaneous wireless recording from 11 channels in a completely passive manner. For biopotential recording, a wearable and flexible wireless sensor is developed, achieving real-time wireless acquisition of ECG, EMG, and EOG signals. For ICP monitoring, a very small (5mm x 4mm) wireless ICP sensor is designed and verified both in vitro through a benchtop setup and in vivo through real-time ICP recording in rats. Finally, for cardiac cell stimulation, a flexible wireless passive stimulator, capable of delivering stimulation current as high as 60 mA, is developed, demonstrating successful control over the contraction of engineered cardiac cells. The studies conducted in this thesis provide information and guidance for future translation of wireless fully-passive telemetry methods into actual clinical application, especially in the field of implantable and wearable electronics.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively…
Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively less value in clinical application. In this dissertation, a wireless wearable sensor on a paper substrate is developed to continuously characterize respiratory behavior and deliver clinically relevant parameters, contributing to asthma control. Based on the anatomical analysis and experimental results, the optimum site for the wireless wearable sensor is on the midway of the xiphoid process and the costal margin, corresponding to the abdomen-apposed rib cage. At the wearing site, the linear strain change during respiration is measured and converted to lung volume by the wireless wearable sensor utilizing a distance-elapsed ultrasound. An on-board low-power Bluetooth module transmits the temporal lung volume change to a smartphone, where a custom-programmed app computes to show the clinically relevant parameters, such as forced vital capacity (FVC) and forced expiratory volume delivered in the first second (FEV1) and the FEV1/FVC ratio. Enhanced by a simple, yet effective machine-learning algorithm, a system consisting of two wireless wearable sensors accurately extracts respiratory features and classifies the respiratory behavior within four postures among different subjects, demonstrating that the respiratory behaviors are individual- and posture-dependent contributing to monitoring the posture-related respiratory diseases. The continuous and accurate monitoring of respiratory behaviors can track the respiratory disorders and diseases' progression for timely and objective approaches for control and management.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The molecular beam epitaxy growth of the III-V semiconductor alloy indium arsenide antimonide bismide (InAsSbBi) is investigated over a range of growth temperatures and V/III flux ratios. Bulk and quantum well structures grown on gallium antimonide (GaSb) substrates are examined.…
The molecular beam epitaxy growth of the III-V semiconductor alloy indium arsenide antimonide bismide (InAsSbBi) is investigated over a range of growth temperatures and V/III flux ratios. Bulk and quantum well structures grown on gallium antimonide (GaSb) substrates are examined. The relationships between Bi incorporation, surface morphology, growth temperature, and group-V flux are explored. A growth model is developed based on the kinetics of atomic desorption, incorporation, surface accumulation, and droplet formation. The model is applied to InAsSbBi, where the various process are fit to the Bi, Sb, and As mole fractions. The model predicts a Bi incorporation limit for lattice matched InAsSbBi grown on GaSb.The optical performance and bandgap energy of InAsSbBi is examined using photoluminescence spectroscopy. Emission is observed from low to room temperature with peaks ranging from 3.7 to 4.6 μm. The bandgap as function of temperature is determined from the first derivative maxima of the spectra fit to an Einstein single oscillator model. The photoluminescence spectra is observed to significantly broaden with Bi content as a result of lateral composition variations and the highly mismatched nature of Bi atoms, pairs, and clusters in the group-V sublattice. A bowing model is developed for the bandgap and band offsets of the quinary alloy GaInAsSbBi and its quaternary constituents InAsSbBi and GaAsSbBi. The band anticrossing interaction due to the highly mismatched Bi atoms is incorporated into the relevant bowing terms. An algorithm is developed for the design of mid infrared GaInAsSbBi quantum wells, with three degrees freedom to independently tune transition energy, in plane strain, and band edge offsets for desired electron and hole confinement. The physical characteristics of the fundamental absorption edge of the relevant III-V binaries GaAs, GaSb, InAs, and InSb are examined using spectroscopic ellipsometry. A five parameter model is developed that describes the key physical characteristics of the absorption edge, including the bandgap energy, the Urbach tail, and the absorption coefficient at the bandgap. The quantum efficiency and recombination lifetimes of bulk InAs0.911Sb0.089 grown by molecular beam epitaxy is investigated using excitation and temperature dependent steady state photoluminescence. The Shockley-Read-Hall, radiative, and Auger recombination lifetimes are determined.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Programmable Metallization Cell (PMC) devices are, in essence, redox-based
solid-state resistive switching devices that rely on ion transport through a solid electrolyte (SE) layer from anode to cathode. Analysis and modeling of the effect of different fabrication and processing parameter/conditions on…
Programmable Metallization Cell (PMC) devices are, in essence, redox-based
solid-state resistive switching devices that rely on ion transport through a solid electrolyte (SE) layer from anode to cathode. Analysis and modeling of the effect of different fabrication and processing parameter/conditions on PMC devices are crucial for future electronics. Furthermore, this work is even more significant for devices utilizing back-end- of-line (BEOL) compatible materials such as Cu, W, their oxides and SiOx as these devices offer cost effectiveness thanks to their inherent foundry-ready nature. In this dissertation, effect of annealing conditions and cathode material on the performance of Cu-SiOx vertical devices is investigated which shows that W-based devices have much lower forming voltage and initial resistance values. Also, higher annealing temperatures first lead to an increase in forming voltage from 400 °C to 500 °C, then a drastic decrease at 550 °C due to Cu island formation at the Cu/SiOx interface. Next, the characterization and modeling of the bilayer Cu2O/Cu-WO3 obtained by annealing the deposited Cu/WO3 stacks in air at BEOL-compatible temperatures is presented that display unique characteristics for lateral PMC devices. First, thin film oxidation kinetics of Cu is studied which show a parabolic relationship with annealing time and an activation energy of 0.70 eV. Grown Cu2O shows a cauliflower-like morphology where feature size on the surface increase with annealing time and temperature. Then, diffusion kinetics of Cu in WO3 is examined where the activation energy of diffusion of Cu into WO3 is calculated to be 0.74 eV. Cu was found to form clusters in the WO3 host which was revealed by imaging. Moreover, using the oxidation and diffusion analyses, a Matlab model is established for modeling the bilayer for process and annealing-condition optimization. The model is built to produce the resulting Cu2O thickness and Cu concentration in Cu-WO3. Additionally, material characterization, preliminary electrical results along with modeling of lateral PMC devices utilizing the bilayer is also demonstrated. By tuning the process parameters such as deposited Cu thickness and annealing conditions, a low-resistive Cu2O layer was achieved which dramatically enhanced the electrodeposition growth rate for lateral PMC devices.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)