Wireless Wearable Sensor to Characterize Respiratory Behaviors

158748-Thumbnail Image.png
Description
Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively

Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively less value in clinical application. In this dissertation, a wireless wearable sensor on a paper substrate is developed to continuously characterize respiratory behavior and deliver clinically relevant parameters, contributing to asthma control. Based on the anatomical analysis and experimental results, the optimum site for the wireless wearable sensor is on the midway of the xiphoid process and the costal margin, corresponding to the abdomen-apposed rib cage. At the wearing site, the linear strain change during respiration is measured and converted to lung volume by the wireless wearable sensor utilizing a distance-elapsed ultrasound. An on-board low-power Bluetooth module transmits the temporal lung volume change to a smartphone, where a custom-programmed app computes to show the clinically relevant parameters, such as forced vital capacity (FVC) and forced expiratory volume delivered in the first second (FEV1) and the FEV1/FVC ratio. Enhanced by a simple, yet effective machine-learning algorithm, a system consisting of two wireless wearable sensors accurately extracts respiratory features and classifies the respiratory behavior within four postures among different subjects, demonstrating that the respiratory behaviors are individual- and posture-dependent contributing to monitoring the posture-related respiratory diseases. The continuous and accurate monitoring of respiratory behaviors can track the respiratory disorders and diseases' progression for timely and objective approaches for control and management.
Date Created
2020
Agent

Wireless Machine-learning Enabled Reconfigurable ""Button-type"" Pressure Sensors for Gait Analysis

Description
This paper introduces a wireless reconfigurable “button-type” pressure sensor system, via machine learning, for gait analysis application. The pressure sensor system consists of an array of independent button-type pressure sensing units interfaced with a remote computer. The pressure sensing unit

This paper introduces a wireless reconfigurable “button-type” pressure sensor system, via machine learning, for gait analysis application. The pressure sensor system consists of an array of independent button-type pressure sensing units interfaced with a remote computer. The pressure sensing unit contains pressure-sensitive resistors, readout electronics, and a wireless Bluetooth module, which are assembled within footprint of 40 × 25 × 6mm3. The small-footprint, low-profile sensors are populated onto a shoe insole, like buttons, to collect temporal pressure data. The pressure sensing unit measures pressures up to 2,000 kPa while maintaining an error under 10%. The reconfigurable pressure sensor array reduces the total power consumption of the system by 50%, allowing extended period of operation, up to 82.5 hrs. A robust machine learning program identifies the optimal pressure sensing units in any given configuration at an accuracy of up to 98%.
Date Created
2018-12
Agent