Relational Macrostate Theory for Understanding and Designing Complex Systems

190707-Thumbnail Image.png
Description
Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws,

Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws, particularly universal ones, still heavily relies on human intellect. Even with human intelligence, complex systems present a unique challenge in discerning the laws that govern them. Even the preliminary step, system description, poses a substantial challenge. Numerous metrics have been developed, but universally applicable laws remain elusive. Due to the cognitive limitations of human comprehension, a direct understanding of big data derived from complex systems is impractical. Therefore, simplification becomes essential for identifying hidden regularities, enabling scientists to abstract observations or draw connections with existing knowledge. As a result, the concept of macrostates -- simplified, lower-dimensional representations of high-dimensional systems -- proves to be indispensable. Macrostates serve a role beyond simplification. They are integral in deciphering reusable laws for complex systems. In physics, macrostates form the foundation for constructing laws and provide building blocks for studying relationships between quantities, rather than pursuing case-by-case analysis. Therefore, the concept of macrostates facilitates the discovery of regularities across various systems. Recognizing the importance of macrostates, I propose the relational macrostate theory and a machine learning framework, MacroNet, to identify macrostates and design microstates. The relational macrostate theory defines a macrostate based on the relationships between observations, enabling the abstraction from microscopic details. In MacroNet, I propose an architecture to encode microstates into macrostates, allowing for the sampling of microstates associated with a specific macrostate. My experiments on simulated systems demonstrate the effectiveness of this theory and method in identifying macrostates such as energy. Furthermore, I apply this theory and method to a complex chemical system, analyzing oil droplets with intricate movement patterns in a Petri dish, to answer the question, ``which combinations of parameters control which behavior?'' The macrostate theory allows me to identify a two-dimensional macrostate, establish a mapping between the chemical compound and the macrostate, and decipher the relationship between oil droplet patterns and the macrostate.
Date Created
2023
Agent

Quantum Mechanics and Thermodynamics in Expanding Spacetimes

187562-Thumbnail Image.png
Description
Much attention has been given to the behavior of quantum fields in expanding Freidmann-Lema\^itre-Robertson-Walker (FLRW) spacetimes, and de Sitter spacetime in particular. In such spacetimes, the S-matrix is ill-defined, so new observables must be constructed that are accessible to both

Much attention has been given to the behavior of quantum fields in expanding Freidmann-Lema\^itre-Robertson-Walker (FLRW) spacetimes, and de Sitter spacetime in particular. In such spacetimes, the S-matrix is ill-defined, so new observables must be constructed that are accessible to both computation and measurement. The most common observable in theories of inflation is an equal-time correlation function, typically computed in the in-in formalism. Weinberg improved upon in-in perturbation theory by reducing the perturbative expansion to a series of nested commutators. Several authors noted a technical difference between Weinberg's formula and standard in-in perturbation theory. In this work, a proof of the order-by-order equivalence of Weinberg's commutators to traditional in-in perturbation theory is presented for all masses and commonly studied spins in a broad class of FLRW spacetimes. Then, a study of the effects of a sector of conformal matter coupled solely to gravity is given. The results can constrain N-naturalness as a complete solution of the hierarchy problem, given a measurement of the tensor fluctuations from inflation. The next part of this work focuses on the thermodynamics of de Sitter. It has been known for decades that there is a temperature associated with a cosmological horizon, which matches the thermal response of a comoving particle detector in de Sitter. A model of a perfectly reflecting cavity is constructed with fixed physical size in two-dimensional de Sitter spacetime. The natural ground state inside the box yields no response from a comoving particle detector, implying that the box screens out the thermal effects of the de Sitter horizon. The total energy inside the box is also shown to be smaller than an equivalent volume of the Bunch-Davies vacuum state. The temperature difference across the wall of the box might drive a heat engine, so an analytical model of the Szil\'ard engine is constructed and studied. It is found that all relevant thermodynamical quantities can be computed exactly at all stages of the engine cycle.
Date Created
2023
Agent

SwarmNet: A Graph Based Learning Framework for Creating and Understanding Multi-Agent System Behaviors

158889-Thumbnail Image.png
Description
A swarm describes a group of interacting agents exhibiting complex collective behaviors. Higher-level behavioral patterns of the group are believed to emerge from simple low-level rules of decision making at the agent-level. With the potential application of swarms of aerial

A swarm describes a group of interacting agents exhibiting complex collective behaviors. Higher-level behavioral patterns of the group are believed to emerge from simple low-level rules of decision making at the agent-level. With the potential application of swarms of aerial drones, underwater robots, and other multi-robot systems, there has been increasing interest in approaches for specifying complex, collective behavior for artificial swarms. Traditional methods for creating artificial multi-agent behaviors inspired by known swarms analyze the underlying dynamics and hand craft low-level control logics that constitute the emerging behaviors. Deep learning methods offered an approach to approximate the behaviors through optimization without much human intervention.

This thesis proposes a graph based neural network architecture, SwarmNet, for learning the swarming behaviors of multi-agent systems. Given observation of only the trajectories of an expert multi-agent system, the SwarmNet is able to learn sensible representations of the internal low-level interactions on top of being able to approximate the high-level behaviors and make long-term prediction of the motion of the system. Challenges in scaling the SwarmNet and graph neural networks in general are discussed in detail, along with measures to alleviate the scaling issue in generalization is proposed. Using the trained network as a control policy, it is shown that the combination of imitation learning and reinforcement learning improves the policy more efficiently. To some extent, it is shown that the low-level interactions are successfully identified and separated and that the separated functionality enables fine controlled custom training.
Date Created
2020
Agent

Physical Universality, State-Dependent Dynamical Laws and Open-Ended Novelty

130252-Thumbnail Image.png
Description
A major conceptual step forward in understanding the logical architecture of living systems was advanced by von Neumann with his universal constructor, a physical device capable of self-reproduction. A necessary condition for a universal constructor to exist is that the

A major conceptual step forward in understanding the logical architecture of living systems was advanced by von Neumann with his universal constructor, a physical device capable of self-reproduction. A necessary condition for a universal constructor to exist is that the laws of physics permit physical universality, such that any transformation (consistent with the laws of physics and availability of resources) can be caused to occur. While physical universality has been demonstrated in simple cellular automata models, so far these have not displayed a requisite feature of life—namely open-ended evolution—the explanation of which was also a prime motivator in von Neumann’s formulation of a universal constructor. Current examples of physical universality rely on reversible dynamical laws, whereas it is well-known that living processes are dissipative. Here we show that physical universality and open-ended dynamics should both be possible in irreversible dynamical systems if one entertains the possibility of state-dependent laws. We demonstrate with simple toy models how the accessibility of state space can yield open-ended trajectories, defined as trajectories that do not repeat within the expected Poincaré recurrence time and are not reproducible by an isolated system. We discuss implications for physical universality, or an approximation to it, as a foundational framework for developing a physics for life.
Date Created
2017-09-01
Agent

Gene Families in Cancer: Using phylogenetic data to examine an atavistic model of cancer

136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
Date Created
2015-05
Agent

Tunneling Time in Quantum Mechanics

135853-Thumbnail Image.png
Description
The longstanding issue of how much time it takes a particle to tunnel through quantum barriers is discussed; in particular, the phenomenon known as the Hartman effect is reviewed. A calculation of the dwell time for two successive rectangular barriers

The longstanding issue of how much time it takes a particle to tunnel through quantum barriers is discussed; in particular, the phenomenon known as the Hartman effect is reviewed. A calculation of the dwell time for two successive rectangular barriers in the opaque limit is given and the result depends on the barrier widths and hence does not lead to superluminal tunneling or the Hartman effect.
Date Created
2009-05
Agent

Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems

130294-Thumbnail Image.png
Description
Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the

Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.
Date Created
2017-04-20
Agent

Ancient Genes Establish Stress-Induced Mutation as a Hallmark of Cancer

130295-Thumbnail Image.png
Description

Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental

Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts.

We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to stress that evolved among prokaryotes was co-opted to maintain diversity in the germline and immune system, while the original phenotype is restored in cancer. Reversion to a stress-induced mutational response is a hallmark of cancer that allows for effectively searching “protected” genome space where genes causally implicated in cancer are located and underlies the high adaptive potential and concomitant therapeutic resistance that is characteristic of cancer.

Date Created
2017-04-25
Agent

Isotropic 3D Nuclear Morphometry of Normal, Fibrocystic and Malignant Breast Epithelial Cells Reveals New Structural Alterations

130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D.

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Date Created
2012-01-05
Agent

Cancer as a Dynamical Phase Transition

130369-Thumbnail Image.png
Description

This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically

This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition is a dynamical non-equilibrium phenomenon, which depends on both metabolic energy supply and local physiological conditions. A number of implications for preventative and therapeutic strategies are outlined.

Date Created
2011-08-25
Agent