Einstein gravity and beyond: aspects of higher-curvature gravity and black holes

153320-Thumbnail Image.png
Description
This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f(R) gravity causes

This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f(R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of the null energy condition in gravity is provided. The purpose of the null energy condition is to filter out ill-behaved theories containing ghosts. Conformal transformations, which are simple redefinitions of the spacetime, introduces serious violations of the null energy condition. This violation is shown to be spurious and a prescription for obtaining a modified null energy condition, based on the universality of the second law of thermodynamics, is provided. The thermodynamic properties of the black holes are further explored using merger of extremal black holes whose horizon entropy has topological contributions coming from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent belief in the literature that the second law of black hole thermodynamics is violated in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific class of higher derivative scalar field theories called the galileons are obtained from a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condition violating theories which lead to violations of the second law of thermodynamics of black holes. These higher derivative scalar field theories which are non-minimally coupled to gravity required the development of a generalized method for obtaining the equations of motion. Utilizing this generalized method, it is shown that the inclusion of the Gauss-Bonnet term made the theory of gravity to become higher derivative, which makes it difficult to make any statements about the connection between the violation of the second law of thermodynamics and the galileon fields.
Date Created
2014
Agent

Quantum non-barking dogs

130432-Thumbnail Image.png
Description
Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple

Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Thus, just as the dog that didn't bark in Arthur Conan Doyle's story Silver Blaze gave Sherlock Holmes meaningful information about the dog's non-canine environment, here we probe whether the particle that has not decayed or has not tunneled can provide measurable information about physical changes in the environment. Previous work suggests that very large weak values might arise in these regions for long durations between pre- and post-selection times. Our calculations reveal some distinct differences between the two model systems.
Date Created
2014-06-13
Agent

Holography in Rindler space

151369-Thumbnail Image.png
Description
This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory

This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space which is the part of Minkowski space seen by an observer with a constant proper acceleration. Because it has an event horizon, Rindler space has been studied in great detail within the context of quantum field theory. However, a quantum gravitational treatment of Rindler space is handicapped by the fact that quantum gravity in flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space (AdS), is relatively well understood via the AdS/CFT correspondence. Taking this cue, we construct Rindler coordinates for AdS (Rindler-AdS space) in d + 1 spacetime dimensions. In three spacetime dimensions, we find novel one-parameter families of stationary vacua labeled by a rotation parameter β. The interesting thing about these rotating Rindler-AdS spaces is that they possess an observer-dependent ergoregion in addition to having an event horizon. Turning next to the application of AdS/CFT correspondence to Rindler-AdS space, we posit that the two Rindler wedges in AdSd+1 are dual to an entangled conformal field theory (CFT) that lives on two boundaries with geometry R × Hd-1. Specializing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS space using the boundary CFT. We then probe the causal structure of the spacetime by sending in a time-like source and observe that the CFT “knows” when the source has fallen past the Rindler horizon. We conclude by proposing an alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space. Towards the end, we consider the concept of weak measurements in quantum mechanics, wherein the measuring instrument is weakly coupled to the system being measured. We consider such measurements in the context of two examples, viz. the decay of an excited atom, and the tunneling of a particle trapped in a well, and discuss the salient features of such measurements.
Date Created
2012
Agent

Helicity asymmetry E In Eta (547) meson photoproduction from the proton

150316-Thumbnail Image.png
Description
The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for

The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been conducted at Jefferson Lab using a tagged polarized photon beam and a frozen spin polarized target (FROST). The results presented here were taken during the first running period of FROST using the CLAS detector at Jefferson Lab with photon energies ranging from 329 MeV to 2.35 GeV. Data are presented for the E polarization observable for eta meson photoproduction on the proton from threshold (W=1500 MeV) to W=1900 MeV. Comparisons to the partial wave analyses of SAID and Bonn-Gatchina along with the isobar analysis of eta-MAID are made. These results will help distinguish between current theoretical predictions and refine future theories.
Date Created
2011
Agent