Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
Details
Title
- Gene Families in Cancer: Using phylogenetic data to examine an atavistic model of cancer
Contributors
- Orr, Adam James (Author)
- Davies, Paul (Thesis director)
- Bussey, Kimberly (Committee member)
- Barrett, The Honors College (Contributor)
- School of Mathematical and Statistical Sciences (Contributor)
- Department of Chemistry and Biochemistry (Contributor)
- School of Life Sciences (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015-05
Subjects
Resource Type
Collections this item is in