Quantifying mechanical heterogeneity in 3D biological systems with the atomic force microscope

153678-Thumbnail Image.png
Description
The atomic force microscope (AFM) is capable of directly probing the mechanics of samples with length scales from single molecules to tissues and force scales from pico to micronewtons. In particular, AFM is widely used as a tool to measure

The atomic force microscope (AFM) is capable of directly probing the mechanics of samples with length scales from single molecules to tissues and force scales from pico to micronewtons. In particular, AFM is widely used as a tool to measure the elastic modulus of soft biological samples by collecting force-indentation relationships and fitting these to classic elastic contact models. However, the analysis of raw force-indentation data may be complicated by mechanical heterogeneity present in biological systems. An analytical model of an elastic indentation on a bonded two-layer sample was solved. This may be used to account for substrate effects and more generally address experimental design for samples with varying elasticity. This model was applied to two mechanobiology systems of interest. First, AFM was combined with confocal laser scanning fluorescence microscopy and finite element analysis to examine stiffness changes during the initial stages of invasion of MDA-MB-231 metastatic breast cells into bovine collagen I matrices. It was determined that the cells stiffen significantly as they invade, the amount of stiffening is correlated with the elastic modulus of the collagen gel, and inhibition of Rho-associated protein kinase reduces the elastic modulus of the invading cells. Second, the elastic modulus of cancer cell nuclei was investigated ex situ and in situ. It was observed that inhibition of histone deacetylation to facilitate chromatin decondenstation result in significantly more morphological and stiffness changes in cancerous cells compared to normal cells. The methods and results presented here offer novel strategies for approaching biological systems with AFM and demonstrate its applicability and necessity in studying cellular function in physiologically relevant environments.
Date Created
2015
Agent

Nanofluidic pathways for single molecule translocation and sequencing: nanotubes and nanopores

153568-Thumbnail Image.png
Description
Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis

Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis focuses on the study of first and crucial compartment of the third generation sequencing technique, the capture and translocation of biopolymers, and discuss the advantages and obstacles of two different nanofluidic pathways, nanotubes and nanopores for single molecule capturing and translocation. Carbon nanotubes with its constrained structure, the frictionless inner wall and strong electroosmotic flow, are promising materials for linearly threading DNA and other biopolymers for sequencing. Solid state nanopore on the other hand, is a robust chemical, thermal and mechanical stable nanofluidic device, which has a high capturing rate and, to some extent, good controllable threading ability for DNA and other biomolecules. These two different but similar nanofluidic pathways both provide a good preparation of analyte molecules for the sequencing purpose. In addition, more and more research interests have move onto peptide chains and protein sensing. For proteome is better and more direct indicators for human health, peptide chains and protein sensing have a much wider range of applications on bio-medicine, disease early diagnoses, and etc. A universal peptide chain nanopore sensing technique with universal chemical modification of peptides is discussed in this thesis as well, which unifies the nanopore capturing process for vast varieties of peptides. Obstacles of these nanofluidic pathways are also discussed. In the end of this thesis, a proposal of integration of solid state nanopore and fixed-gap recognition tunneling sequencing technique for a more accurate DNA and peptide readout is discussed, together with some early study work, which gives a new direction for nanopore based sequencing.
Date Created
2015
Agent

A study of the structure and internal dynamics of calcitonin gene-related peptide

153462-Thumbnail Image.png
Description
Calcitonin Gene-Related Peptide (CGRP) is an intrinsically disordered protein

that has no regular secondary structure, but plays an important role in vasodilation and pain transmission in migraine. Little is known about the structure and dynamics of the monomeric state of CGRP

Calcitonin Gene-Related Peptide (CGRP) is an intrinsically disordered protein

that has no regular secondary structure, but plays an important role in vasodilation and pain transmission in migraine. Little is known about the structure and dynamics of the monomeric state of CGRP or how CGRP is able to function in the cell, despite the lack of regular secondary structure. This work focuses characterizing the non-local structural and dynamical properties of the CGRP monomer in solution, and understanding how these are affected by the sequence and the solution environment. The unbound, free state of CGRP is measured using a nanosecond laser-pump spectrophotometer, which allows measuring the end-to-end distance (a non-local structural property) and the rate of end-to-end contact formation (intra-chain diffusional dynamics). The data presented in this work show that electrostatic interactions strongly modulate the structure of CGRP, and that peptide-solvent interactions are sequence and charge dependent and can have a significant effect on the internal dynamics of the peptide. In the last few years migraine research has shifted focus to disrupting the CGRP-receptor pathway through the design of pharmacological drugs that bind to either CGRP or its receptor, inhibiting receptor activation and therefore preventing or reducing the frequency of migraine attacks. Understanding what types of intra- and inter-chain interactions dominate in CGRP can help better design drugs that disrupt the binding of CGRP to its receptor.
Date Created
2015
Agent

Studying biomolecular structures and their interaction using atomic force microscopy

153337-Thumbnail Image.png
Description
Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence

Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence AFM has become extremely important in the field of biochemistry, cell biology and material science. Functionalizing the AFM tip made it possible to detect molecules and their interaction using recognition imaging at single molecule level. Also the unbinding force of two molecules can be investigated based on AFM based single molecule force spectroscopy.

In the first study, a new chemical approach to functionalize the AFM tip in a simple and user-friendly way has been described. Copper-free click chemistry and a vinyl sulfone PEG linker have been utilized during the process. Using this technique, human thrombin and integrin were detected in separate experiments. Then a novel tri-arm linker with two recognition molecules on it was designed and two proteins (human thrombin and integrin) were detected simultaneously in the same experiment using recognition imaging. This technique can be applied to understand many multivalent interactions taking place in nature. Using the same tri-arm linker functionalized with two biotin molecules, the interaction of streptavidin with mono-biotin and bis-biotin ligands were investigated. The thermal stability of streptavidin-biotin complex was also studied using SDS-PAGE analysis.

In the final study, structure of native chromatin extracted from normal and cancer cell lines were analyzed using AFM imaging and agarose gel electrophoresis. Different salt fractions were used to extract chromatin region depending on their solubility. Mnase sensitivity of the chromatin sample was used to understand the open and closed structures of chromatin from different sources. The amount of chromatin in different salt fractions could act as an indicator of amount of open and condensed chromatin in normal and cancer cells. Eventually this ratio of closed and open structure of chromatin could be an indicator of tumorigenic nature of particular cell lines.
Date Created
2015
Agent

Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres

Description
Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed.

Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the homothallic silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibres are less compact than canonical magnesium-induced 30 nm fibres. We suggest that heterochromatin proteins promote silencing by ‘coating’ nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.
Date Created
2014-08-01
Agent

Electromechanical properties of single molecule devices

153071-Thumbnail Image.png
Description
Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this

Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules.

First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance.

Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence.

Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking are found to be more responsive to modulation than purine-pyrimidine sequences. This sensitivity is attributed to the perturbation of &pi-&pi stacking interactions and resulting effects on the activation energy and electronic coupling for the end base pairs.
Date Created
2014
Agent

Application of recognition tunneling in single molecule identification

152848-Thumbnail Image.png
Description
Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have

Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have developed shows that after functionalization of the probe and substrate of a conventional Scanning Tunneling Microscope with recognition molecules ("tethered molecule-pair" configuration), analyte molecules trapped in the gap that is formed by probe and substrate will bond with the reagent molecules. The stochastic bond formation/breakage fluctuations give insight into the nature of the intermolecular bonding at a single molecule-pair level. The distinct time domain and frequency domain features of tunneling signals were extracted from raw signals of analytes such as amino acids and their enantiomers. The Support Vector Machine (a machine-learning method) was used to do classification and predication based on the signal features generated by analytes, giving over 90% accuracy of separation of up to seven analytes. This opens up a new interface between chemistry and electronics with immediate implications for rapid Peptide/DNA sequencing and molecule identification at single molecule level.
Date Created
2014
Agent

Investigating the stoichiometry of RuBisCO activase by fluorescence fluctuation spectroscopy

152827-Thumbnail Image.png
Description
Ribulose-1, 5-bisphosphate carboxylase oxygenase, commonly known as RuBisCO, is an enzyme involved in carbon fixation in photosynthetic organisms. The enzyme is subject to a mechanism-based deactivation during its catalytic cycle. RuBisCO activase (Rca), an ancillary enzyme belonging to the AAA+

Ribulose-1, 5-bisphosphate carboxylase oxygenase, commonly known as RuBisCO, is an enzyme involved in carbon fixation in photosynthetic organisms. The enzyme is subject to a mechanism-based deactivation during its catalytic cycle. RuBisCO activase (Rca), an ancillary enzyme belonging to the AAA+ family of the ATP-ases, rescues RuBisCO by facilitating the removal of the tightly bound sugar phosphates from the active sites of RuBisCO. In this work, we investigated the ATP/ADP dependent oligomerization equilibrium of fluorescently tagged Rca for a wide range of concentrations using fluorescence correlation spectroscopy. Results show that in the presence of ADP-Mg2+, the oligomerization state of Rca gradually changes in steps of two subunits. The most probable association model supports the dissociation constants (K_d) of ∼4, 1, 1 μM for the monomer-dimer, dimer-tetramer, and tetramer-hexamer equlibria, respectively. Rca continues to assemble at higher concentrations which are indicative of the formation of aggregates. In the presence of ATP-Mg2+, a similar stepwise assembly is observed. However, at higher concentrations (30-75 µM), the average oligomeric size remains relatively unchanged around six subunits per oligomer. This is in sharp contrast with observations in ADP-Mg2+, where a marked decrease in the diffusion coefficient of Rca was observed, consistent with the formation of aggregates. The estimated K_d values obtained from the analysis of the FCS decays were similar for the first steps of the assembly process in both ADP-Mg2+ and ATP-Mg2+. However, the formation of the hexamer from the tetramer is much more favored in ATP-Mg2+, as evidenced from 20 fold lower K_d associated with this assembly step. This suggests that the formation of a hexameric ring in the presence of ATP-Mg2+. In addition to that, Rca aggregation is largely suppressed in the presence of ATP-Mg2+, as evidenced from the 1000 fold larger K_d value for the hexamer-24 mer association step. In essence, a fluorescence-based method was developed to monitor in vitro protein oligomerization and was successfully applied with Rca. The results provide a strong hint at the active oligomeric structure of Rca, and this information will hopefully help the ongoing research on the mechanistic enzymology of Rca.
Date Created
2014
Agent

Portable sensors for breath analysis

152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common.

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
Date Created
2013
Agent

Nanofluidics for single molecule DNA sequencing

152097-Thumbnail Image.png
Description
After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by

After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection. Chapter 2 presents discusses carbon nanotube(CNT) based nanofluidics. The fabrication and DNA sensing measurements of CNT forest membrane devices are presented. Chapter 3 gives the background for functionalization and recognition aspects of reader molecules. Chapter 4 marks the transition to solid state nanopore nanofluidics. The fabrication of Imidazole functionalized nanopores is discussed. The Single Molecule detection results of DNA from Palladium nanopore devices are presented next. Combining chemical recognition to nanopore technology, it has been possible to prolong the duration of single molecule events from the order of a few micro seconds to upto a few milliseconds. Overall, the work presented in this thesis promises longer single molecule detection time in a nanofludic set up and paves way for novel nanopore- tunnel junction devices that combine recognition chemistry, tunneling device and nanopore approach.
Date Created
2013
Agent