Description
Calcitonin Gene-Related Peptide (CGRP) is an intrinsically disordered protein
that has no regular secondary structure, but plays an important role in vasodilation and pain transmission in migraine. Little is known about the structure and dynamics of the monomeric state of CGRP or how CGRP is able to function in the cell, despite the lack of regular secondary structure. This work focuses characterizing the non-local structural and dynamical properties of the CGRP monomer in solution, and understanding how these are affected by the sequence and the solution environment. The unbound, free state of CGRP is measured using a nanosecond laser-pump spectrophotometer, which allows measuring the end-to-end distance (a non-local structural property) and the rate of end-to-end contact formation (intra-chain diffusional dynamics). The data presented in this work show that electrostatic interactions strongly modulate the structure of CGRP, and that peptide-solvent interactions are sequence and charge dependent and can have a significant effect on the internal dynamics of the peptide. In the last few years migraine research has shifted focus to disrupting the CGRP-receptor pathway through the design of pharmacological drugs that bind to either CGRP or its receptor, inhibiting receptor activation and therefore preventing or reducing the frequency of migraine attacks. Understanding what types of intra- and inter-chain interactions dominate in CGRP can help better design drugs that disrupt the binding of CGRP to its receptor.
that has no regular secondary structure, but plays an important role in vasodilation and pain transmission in migraine. Little is known about the structure and dynamics of the monomeric state of CGRP or how CGRP is able to function in the cell, despite the lack of regular secondary structure. This work focuses characterizing the non-local structural and dynamical properties of the CGRP monomer in solution, and understanding how these are affected by the sequence and the solution environment. The unbound, free state of CGRP is measured using a nanosecond laser-pump spectrophotometer, which allows measuring the end-to-end distance (a non-local structural property) and the rate of end-to-end contact formation (intra-chain diffusional dynamics). The data presented in this work show that electrostatic interactions strongly modulate the structure of CGRP, and that peptide-solvent interactions are sequence and charge dependent and can have a significant effect on the internal dynamics of the peptide. In the last few years migraine research has shifted focus to disrupting the CGRP-receptor pathway through the design of pharmacological drugs that bind to either CGRP or its receptor, inhibiting receptor activation and therefore preventing or reducing the frequency of migraine attacks. Understanding what types of intra- and inter-chain interactions dominate in CGRP can help better design drugs that disrupt the binding of CGRP to its receptor.
Details
Title
- A study of the structure and internal dynamics of calcitonin gene-related peptide
Contributors
- Sizemore, Sara (Author)
- Vaiana, Sara (Thesis advisor)
- Ghirlanda, Giovanna (Committee member)
- Ros, Robert (Committee member)
- Lindsay, Stuart (Committee member)
- Ozkan, Sefika (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2015
- bibliographyIncludes bibliographical references
- Field of study: Physics
Citation and reuse
Statement of Responsibility
by Sara Sizemore