An Investigation into Cancer and Cancer-Like Phenomena Present in Anthozoa and Possible Causes of Such Phenomena.

166159-Thumbnail Image.png
Description

This paper will serve as a review of relevant scleractinian coral biology and genetics, discuss the ecological and biological impacts of growth anomalies in scleractinians, discuss the importance of studying this phenomena in terms of conservation, outline and discuss the

This paper will serve as a review of relevant scleractinian coral biology and genetics, discuss the ecological and biological impacts of growth anomalies in scleractinians, discuss the importance of studying this phenomena in terms of conservation, outline and discuss the processes undertaken to elucidate possible genetic markers of the growth anomalies, as well as discuss growth anomalies within the context of other coral disease and the anthropocene to add clarity no the subject to the oncological discussion taking place around such anomalies.

Date Created
2022-05
Agent

Analyzing the Effects of Cell Proliferation on the Evolution of Cancerous Systems

165955-Thumbnail Image.png
Description
Cancer is a disease that takes the lives of almost 10 million people every year, and due to humans’ nature as multicellular organisms, it is both inevitable and incurable. Therefore, management of the disease is of utmost importance. Due to

Cancer is a disease that takes the lives of almost 10 million people every year, and due to humans’ nature as multicellular organisms, it is both inevitable and incurable. Therefore, management of the disease is of utmost importance. Due to the complexity of cancer and its development, numerous computational models have been developed that allow for precise diagnostic and management input. This experiment uses one of these said models, CancerSim, to evaluate the effect of proliferation rates on the order in which the hallmarks of cancer evolve in the simulations. To do this, the simulation is run with initial telomere length increased to simulate the effects of more living cells proliferating at every time step. The results of this experiment show no significant effect of initial telomere length on the order that hallmarks evolved, but all simulations ended with cancers that were dominant with cells that contained limitless replication and evade apoptosis hallmarks. These results may have been affected by limitations in the CancerSim model such as the inability to model metastasis and the lack of a robust angiogenesis solution. This study reveals how individual cell characteristics may not have a large effect on cancer evolution, but rather individual hallmarks can affect evolution significantly. Further studies with a revised version of CancerSim or another model could confirm the behavior demonstrated in this experiment
Date Created
2022-05
Agent

Age as a Cancer Risk Factor Across Species

165129-Thumbnail Image.png
Description

Age is the most significant risk factor for cancer development in humans. The somatic mutation theory postulates that the accumulation of genomic mutations over time results in cellular function degradation which plays an important role in understanding aging and cancer

Age is the most significant risk factor for cancer development in humans. The somatic mutation theory postulates that the accumulation of genomic mutations over time results in cellular function degradation which plays an important role in understanding aging and cancer development. Specifically, degradation of the mechanisms that underlie somatic maintenance can occur due to decreased immune cell function and genomic responses to DNA damage. Research has shown that this degradation can lead to the accumulation of mutations that can cause cancer in humans. Despite recent advances in our understanding of cancer in non-human species, how this risk factor translates across species is poorly characterized. Here, we analyze a veterinarian cancer dataset of 4,178 animals to investigate if age related cancer prevalence is similar in non-human animals. We intend for this work to be used as a primary step towards understanding the potential overlap and/or uniqueness between human and non-human cancer risk factors. This study can be used to better understand cancer development and how evolutionary processes have shaped somatic maintenance across species.

Date Created
2022-05
Agent

Bioinformatics Analysis of Novel Model Organisms: Sponge, Flatworm, and Bacterial Endosymbionts

164973-Thumbnail Image.png
Description

Evolution has driven organisms to develop a wide range of biological mechanisms to protect against cancer. Some organisms, including the sponge Tethya wilhelma and the Placozoa Trichoplax adhaerens have developed particularly effective mechanisms to suppress cancer and repair DNA damage.

Evolution has driven organisms to develop a wide range of biological mechanisms to protect against cancer. Some organisms, including the sponge Tethya wilhelma and the Placozoa Trichoplax adhaerens have developed particularly effective mechanisms to suppress cancer and repair DNA damage. While these mechanisms are rooted in DNA damage repair and prevention, evidence of bacteria may suggest that endosymbionts living within the organisms may plays a role as well. Likewise, other organisms, such as the flatworm Macrostomum lignano, are proven model organisms whose extensive documentation enables more in-depth analysis of biological mechanisms associated with cancer. Sponges, flatworms, and Placozoa were exposed to X-ray radiation totaling 600 Gy, 25 Gy, and up to 240 Gy, respectively. RNA sequencing and bioinformatics analyses were undergone to determine the differential gene expression of the animals at different time points. No common response to the X-ray radiation was discovered amongst all organisms. Instead, sponges showed evidence of tumor suppression and DNA repair gene upregulation including CUBN, bacterial endosymbionts showed evidence of lateral gene transfer and different DNA repair genes including FH, and flatworms showed evidence of allelic and mutational shifts in which tumorous populations became more reliant on alternate alleles and a single variant signature. This study highlights the varying mechanisms that have evolved in different organisms and the importance of studying these novel model organisms further.

Date Created
2022-05
Agent

Reproductive Cancer Prevalence Across Mammalian Species

164820-Thumbnail Image.png
Description

Cancers of the reproductive tissues make up a significant portion of the cancer burden and mortality experienced by humans. Humans experience several proximal causative carcinogens that explain a portion of cancer risk, but an evolutionary viewpoint can provide a unique

Cancers of the reproductive tissues make up a significant portion of the cancer burden and mortality experienced by humans. Humans experience several proximal causative carcinogens that explain a portion of cancer risk, but an evolutionary viewpoint can provide a unique lens into the ultimate causes of reproductive cancer vulnerabilities. A life history framework allows us to make predictions on cancer prevalence based on a species’ tempo of reproduction. Moreover, certain variations in the susceptibility and prevalence of cancer may emerge due to evolutionary trade-offs between reproduction and somatic maintenance. For example, such trade-offs could involve the demand for rapid proliferation of cells in reproductive tissues that arises with reproductive events. In this study, I compiled reproductive cancer prevalence for 158 mammalian species and modeled the predictive power of 13 life history traits on the patterns of cancer prevalence we observed, such as Peto’s Paradox or slow-fast life history strategies. We predicted that fast-life history strategists will exhibit higher neoplasia prevalence risk due to reproductive trade-offs. Furthering this analytical framework can aid in predicting cancer rates and stratifying cancer risk across the tree of life.

Date Created
2022-05
Agent

Prostate Cancer Modeling: Exploring a Path from Theory and Practice

161970-Thumbnail Image.png
Description
The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this

The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this context, clinical observations form the bridge between the mathematical frameworks and applications. However, the formulation and theoretical studies of the models and the clinical studies are often not completely compatible, which is one of the main obstacles in the application of mathematical models in practice. The goal of my study is to extend a mathematical framework to model prostate cancer based mainly on the concept of cell-quota within an evolutionary framework and to study the relevant aspects for the model to gain useful insights in practice. Specifically, the first aim is to construct a mathematical model that can explain and predict the observed clinical data under various treatment combinations. The second aim is to find a fundamental model structure that can capture the dynamics of cancer progression within a realistic set of data. Finally, relevant clinical aspects such as how the patient's parameters change over the course of treatment and how to incorporate treatment optimization within a framework of uncertainty quantification, will be examined to construct a useful framework in practice.
Date Created
2021
Agent

Pathway Analysis Reveals Sex Differences in Human Hepatocellular Carcinoma

161529-Thumbnail Image.png
Description
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide and exhibits a male-bias in occurrence and mortality. Previous studies have provided insight into the role of inherited genetic regulation of transcription in modulating sex-differences in HCC etiology

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide and exhibits a male-bias in occurrence and mortality. Previous studies have provided insight into the role of inherited genetic regulation of transcription in modulating sex-differences in HCC etiology and mortality. This study uses pathway analysis to add insight into the biological processes that drive sex-differences in HCC etiology as well as a provide additional framework for future studies on sex-biased cancers. Gene expression data from normal, tumor adjacent, and HCC liver tissue were used to calculate pathway scores using a tool called PathOlogist that not only takes into consideration the molecules in a biological pathway, but also the interaction type and directionality of the signaling pathways. Analysis of the pathway scores uncovered etiologically relevant pathways differentiating male and female HCC. In normal and tumor adjacent liver tissue, males showed higher activity of pathways related to translation factors and signaling. Females did not show higher activity of any pathways compared to males in normal and tumor adjacent liver tissue. Work suggest biologic processes that underlie sex-biases in HCC occurrence and mortality. Both males and females differed in the activation of pathways related apoptosis, cell cycle, signaling, and metabolism in HCC. These results identify clinically relevant pathways for future research and therapeutic targeting.
Date Created
2021
Agent

Modeling the Evolution of Senescence & Apoptosis in the Emergence of Multicellularity

161050-Thumbnail Image.png
Description

Cooperative cellular phenotypes are universal across multicellular life. Division of labor, regulated proliferation, and controlled cell death are essential in the maintenance of a multicellular body. Breakdowns in these cooperative phenotypes are foundational in understanding the initiation and progression of

Cooperative cellular phenotypes are universal across multicellular life. Division of labor, regulated proliferation, and controlled cell death are essential in the maintenance of a multicellular body. Breakdowns in these cooperative phenotypes are foundational in understanding the initiation and progression of neoplastic diseases, such as cancer. Cooperative cellular phenotypes are straightforward to characterize in extant species but the selective pressures that drove their emergence at the transition(s) to multicellularity have yet to be fully characterized. Here we seek to understand how a dynamic environment shaped the emergence of two mechanisms of regulated cell survival: apoptosis and senescence. We developed an agent-based model to test the time to extinction or stability in each of these phenotypes across three levels of stochastic environments.

Date Created
2021-12
Agent

Body Size Evolution and Cancer Defenses Across Ruminants

147917-Thumbnail Image.png
Description

Cancer is a disease acquired through mutations which leads to uncontrolled cell division and destruction of normal tissue within the body. Recent increases in available cross-species data of cancer in mammals, reptiles, birds, and other vertebrates has revealed that the

Cancer is a disease acquired through mutations which leads to uncontrolled cell division and destruction of normal tissue within the body. Recent increases in available cross-species data of cancer in mammals, reptiles, birds, and other vertebrates has revealed that the prevalence of cancers varies widely across species. Life-history theory suggests that there could be traits that potentially explain some of that variation. We are particularly interested in species that get very little cancer. How are they preventing cancer and can we learn from them how to prevent cancer in humans? Comparative oncology focuses on the analysis of cancer prevalence and traits in different non-human species and allows researchers to apply their findings to humans with the goal of improving and advancing cancer treatment. We incorporate the predictions that animals with larger bodies have evolved better cancer suppression mechanisms than animals with small bodies. Ruminants in the past were larger in size than modern day ruminants and they may have retained cancer defenses from their large ancestors. The strong cancer defenses and small body size combined may explain the low prevalence of cancer in Ruminants. This paper aims to evaluate the presence of benign and malignant neoplasia prevalence across multiple ruminant species following a time of dramatic decrease in body size across the clade. Our aim is to illuminate the potential impact that these shifts in body size had on their cancer prevalence as well as test the statistical power of other key life history variables to predict cancer prevalence.

Date Created
2021-05
Agent

Initial experiment of Adaptive Therapy to control Breast Cancer

148450-Thumbnail Image.png
Description

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The purpose of this thesis is to draft a protocol to study adaptive therapy in a preclinical model of breast cancer on MCF7, estrogen receptor-positive, cells that have evolved resistance to fulvestrant and palbociclib (MCF7 R). In this study, we used two protocols: drug dose adjustment and intermittent therapy. The MCF7 R cell lines were injected into the mammary fat pads of 11-month-old NOD/SCID gamma (NSG) mice (18 mice) which were then treated with gemcitabine.<br/>The results of this experiment did not provide complete information because of the short-term treatments. In addition, we saw an increase in the tumor size of a few of the treated mice, which could be due to the metabolism of the drug at that age, or because of the difference in injection times. Therefore, these adaptive therapy protocols on hormone-refractory breast cancer cell lines will be repeated on young, 6-week old mice by injecting the cell lines at the same time for all mice, which helps the results to be more consistent and accurate.

Date Created
2021-05
Agent