Prostate Cancer Modeling: Exploring a Path from Theory and Practice

161970-Thumbnail Image.png
Description
The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this

The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this context, clinical observations form the bridge between the mathematical frameworks and applications. However, the formulation and theoretical studies of the models and the clinical studies are often not completely compatible, which is one of the main obstacles in the application of mathematical models in practice. The goal of my study is to extend a mathematical framework to model prostate cancer based mainly on the concept of cell-quota within an evolutionary framework and to study the relevant aspects for the model to gain useful insights in practice. Specifically, the first aim is to construct a mathematical model that can explain and predict the observed clinical data under various treatment combinations. The second aim is to find a fundamental model structure that can capture the dynamics of cancer progression within a realistic set of data. Finally, relevant clinical aspects such as how the patient's parameters change over the course of treatment and how to incorporate treatment optimization within a framework of uncertainty quantification, will be examined to construct a useful framework in practice.
Date Created
2021
Agent

Validation of a Mathematical Model of Intermittent Androgen Deprivation Therapy in Castration-Resistant Prostate Cancer Patietns

148396-Thumbnail Image.png
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

Date Created
2021-05
Agent