Thermodynamic Cartography in Basalt-Hosted Hydrothermal Systems

158671-Thumbnail Image.png
Description
Mantle derived basalts along the entirety of the Earth’s Mid-Ocean Ridge (MOR) spreading centers are continuously altered by seawater, allowing the hydrosphere to subsume energy and exchange mass with the deep, slowly cooling Earth. Compositional heterogeneities inherent to these basalts—the

Mantle derived basalts along the entirety of the Earth’s Mid-Ocean Ridge (MOR) spreading centers are continuously altered by seawater, allowing the hydrosphere to subsume energy and exchange mass with the deep, slowly cooling Earth. Compositional heterogeneities inherent to these basalts—the result of innumerable geophysical and geochemical processes in the mantel and crust—generate spatial variation in the equilibrium states toward which these water-rock environments cascade. This alteration results in a unique distribution of precipitate assemblages, hydrothermal fluid chemistries, and energetic landscapes among ecosystems rooted within and above the seafloor. The equilibrium states for the full range of basalt compositional heterogeneity present today are calculated over all appropriate temperatures and extents of reaction with seawater, along with the non-equilibrium mixtures generated when hydrothermal fluids mix back into seawater. These mixes support ancient and diverse ecosystems fed not by the energy of the sun, but by the geochemical energy of the Earth. Facilitated by novel, high throughout code, this effort has yielded a high-resolution compositional database that is mapped back onto all ridge systems. By resolving the chemical and energetic consequences of basalt-seawater interaction to sub-ridge scales, alteration features that are globally homogeneous can be distinguished from those that are locally unique, guiding future field observations with testable geochemical and biochemical predictions.
Date Created
2020
Agent

Modelling Geochemical and Geobiological Consequences of Low-Temperature Continental Serpentinization

158626-Thumbnail Image.png
Description
The hydrous alteration of ultramafic rocks, known as serpentinization, produces some of the most reduced (H2 >1 mmolal) and alkaline (pH >11) fluids on Earth. Serpentinization can proceed even at the low-temperature conditions (<50°C) characteristic of most of Earth’s continental

The hydrous alteration of ultramafic rocks, known as serpentinization, produces some of the most reduced (H2 >1 mmolal) and alkaline (pH >11) fluids on Earth. Serpentinization can proceed even at the low-temperature conditions (<50°C) characteristic of most of Earth’s continental aquifers, raising questions on the limits of life deep in the subsurface and the magnitude in the flux of reduced volatiles to the surface. In this work, I explored the compositions and consequences of fluids and volatiles found in three low-temperature serpentinizing environments: (1) active hyperalkaline springs in ophiolites, (2) modern shallow and deep peridotite aquifers, and (3) komatiitic aquifers during the Archean.

Around 140 fluids were sampled from the Oman ophiolite and analyzed for their compositions. Fluid compositions can be accounted for by thermodynamic simulations of reactions accompanying incipient to advanced stages of serpentinization, as well as by simulations of mass transport processes such as fluid mixing and mineral leaching. Thermodynamic calculations were also used to predict compositions of end-member fluids representative of the shallow and deep peridotite aquifers that were ultimately used to quantify energy available to various subsurface chemolithotrophs. Calculations showed that sufficient energy and power supply can be available to support deep-seated methanogens. An additional and a more diverse energy supply can be available when surfacing deep-seated fluids mix with shallow groundwater in discharge zones of the subsurface fluid pathway. Finally, the consequence of the evolving continental composition during the Archean for the global supply of H2 generated through komatiite serpentinization was quantified. Results show that the flux of serpentinization-generated H2 could have been a significant sink for O2 during most of the Archean. This O2 sink diminished greatly towards the end of the Archean as komatiites became less common and helped set the stage for the Great Oxidation Event. Overall, this study provides a framework for exploring the origins of fluid and volatile compositions, including their redox state, that can result from various low-temperature serpentinizing environments in the present and past Earth and in other rocky bodies in the solar system.
Date Created
2020
Agent

Interactions Between Fluids, Melts, and Rocks in Subduction Zones

158528-Thumbnail Image.png
Description
My dissertation research broadly focuses on the geochemical and physical exchange of materials between the Earth’s crust and mantle at convergent margins, and how this drives the compositional diversity observed on the Earth’s surface. I combine traditional petrologic and geochemical

My dissertation research broadly focuses on the geochemical and physical exchange of materials between the Earth’s crust and mantle at convergent margins, and how this drives the compositional diversity observed on the Earth’s surface. I combine traditional petrologic and geochemical studies of natural and experimental high-pressure mafic rocks, with thermodynamic modeling of high-pressure aqueous fluids and mafic-ultramafic lithologies allowing for more complete understanding of fluid-melt-rock interactions. The results of the research that follows has important implications for: the role of lower crustal foundering in the geochemical origin and evolution of the modern continental crust (Chapter 2; Guild et al., under review), metasomatic processes involving aqueous metal-carbon complexes in high pressure-temperature subduction zone fluids (Chapter 3; Guild & Shock, 2020), natural hydrous mineral stability at the slab-mantle interface (Chapter 4; Guild, et al., in preparation) and water-undersaturated melting in the sub-arc (Chapter 5; Guild & Till, in preparation).
Date Created
2020
Agent

Timescales and Characteristics of Magma Generation in Earth and Exoplanets

158508-Thumbnail Image.png
Description
Volcanic eruptions are serious geological hazards; the aftermath of the explosive eruptions produced at high-silica volcanic systems often results in long-term threats to climate, travel, farming, and human life. To construct models for eruption forecasting, the timescales of events leading

Volcanic eruptions are serious geological hazards; the aftermath of the explosive eruptions produced at high-silica volcanic systems often results in long-term threats to climate, travel, farming, and human life. To construct models for eruption forecasting, the timescales of events leading up to eruption must be accurately quantified. In the field of igneous petrology, the timing of these events (e.g. periods of magma formation, duration of recharge events) and their influence on eruptive timescales are still poorly constrained.

In this dissertation, I discuss how the new tools and methods I have developed are helping to improve our understanding of these magmatic events. I have developed a method to calculate more accurate timescales for these events from the diffusive relaxation of chemical zoning in individual mineral crystals (i.e., diffusion chronometry), and I use this technique to compare the times recorded by different minerals from the same Yellowstone lava flow, the Scaup Lake rhyolite.

I have also derived a new geothermometer to calculate magma temperature from the compositions of the mineral clinopyroxene and the surrounding liquid. This empirically-derived geothermometer is calibrated for the high FeOtot (Mg# = 56) and low Al2O3 (0.53–0.73 wt%) clinopyroxene found in the Scaup Lake rhyolite and other high-silica igneous systems. A determination of accurate mineral temperatures is crucial to calculate magmatic heat budgets and to use methods such as diffusion chronometry. Together, these tools allow me to paint a more accurate picture of the conditions and tempo of events inside a magma body in the millennia to months leading up to eruption.

Additionally, I conducted petrological experiments to determine the composition of hypothetical exoplanet partial mantle melts, which could become these planets’ new crust, and therefore new surface. Understanding the composition of an exoplanet’s crust is the first step to understanding chemical weathering, surface-atmosphere chemical interactions, the volcanic contribution to any atmosphere present, and biological processes, as life depends on these surfaces for nutrients. The data I have produced can be used to predict differences in crust compositions of exoplanets with similar bulk compositions to those explored herein, as well as to calibrate future exoplanet petrologic models.
Date Created
2020
Agent

Refining Earth’s Ocean Oxygenation History using Molybdenum and Thallium Isotopes

158231-Thumbnail Image.png
Description
Isotope ratios of some trace metals have proven useful for tracking Earth’s ocean oxygenation history. As the limitations of some of these isotope systems are realized, it becomes increasingly important to develop new and complementary systems. This dissertation examines the

Isotope ratios of some trace metals have proven useful for tracking Earth’s ocean oxygenation history. As the limitations of some of these isotope systems are realized, it becomes increasingly important to develop new and complementary systems. This dissertation examines the utility of molybdenum (98Mo) and thallium (205Tl) isotope compositions preserved in ancient marine shales to track past ocean oxygenation. My approach is as follows: (1) as an initial exercise, apply the well-established Mo isotope system to a set of ancient shales; (2) validate the use of the newly developed Tl isotope system; and finally (3) examine the potential of applying Mo and Tl isotopes in tandem.

Increasingly heavier 98Mo are found in shales deposited during the Neoarchean (2,800 to 2,500 million years ago, or Ma), which would be a predicted consequence of progressive ocean oxygenation across this timeframe. Increasingly heavier 205Tl across a well-documented Mesozoic Oceanic Anoxic Event (~94 Ma), on the other hand, would be a predicted consequence of progressive ocean de-oxygenation. An anti-correlation in the first combined application of Mo and Tl isotopes in ancient shales provides a strong fingerprint for previously unrecognized levels of ocean oxygenation at ~2,500 Ma. Lastly, neither 98Mo or 205Tl behave as predicted in shales deposited during three Ediacaran Ocean Oxygenation Events (~635 Ma, ~580 Ma, and ~560 Ma). These unexpected trends are due, at least in part, to local-scale overprints that must be taken into consideration when pairing together Mo and Tl isotopes in shales.

The ability of the Mo and Tl isotope systems to track changes in past ocean oxygenation is confirmed in this dissertation. Both isotope systems have the potential to track these changes independently, but their combined utility is particularly powerful. Under ideal conditions, their combined application can provide an even more robust fingerprint for changes in past ocean oxygenation. Even under non-ideal conditions, their combined application makes it possible to decipher local-scale overprints from signals of past ocean oxygenation. It is therefore ideal, whenever possible, to measure both 98Mo and 205Tl in the same shale samples to assess past changes in ocean oxygenation.
Date Created
2020
Agent

Extreme Seismic Anomalies near Earth’s Core Mantle Boundary

158014-Thumbnail Image.png
Description
The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates

The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates seismic anomalies inside Earth’s lowermost mantle and focuses on patch-like ultra-low velocity zones (ULVZs) found on Earth’s core-mantle boundary (CMB). Firstly, all previous ULVZ studies are compiled and ULVZ locations on the CMB are digitized. The result is a database, which is publicly available online. A key finding is that there is not a simple mapping between the locations of the observed ULVZs and the large low velocities provinces (LLVPs). Instead, ULVZs are more likely to occur near LLVP boundaries. This spatial correlation study supports a compositionally distinct origin for at least some ULVZs. Next, the seismic structure of the basal mantle beneath the Central America is investigated. This region hosts present and past subducted slabs, which could have brought compositionally distinct oceanic basalt all the way down to the CMB. The waveform distortions of a core-reflected seismic phase and a forward modeling method are used to constrain the causes of the CMB structures. In addition to ULVZ structures, isolated patches of thin zones with shear velocity increased by over 10% relative to background mantle are found for the first time. Ultra-high velocity zones (UHVZs) are interspersed with ULVZs and could be caused by subducted mid-ocean ridge basalt (MORB) that undergoes partial melting and melt segregation. Fe-rich partial melt of MORB can form ULVZs, and silica polymorphs (SiO2) and calcium-perovskite (CaPv) rich solid residue can explain the UHVZs. Finally, large-scale heterogeneities in the lowermost mantle are investigated using S waveform broadening observations. Several basal layer models are case-studied via synthetic calculations. S wave arrivals received at a distance larger than 80˚ in a global dataset from large earthquakes between the years 1994 and 2017 are examined and S waveform broadenings are documented. This approach exploits large distance data for the first time, and therefore is complementary to previous studies in terms of sampling locations. One possible explanation of S waveform broadening is velocity discontinuity inside the D″ layer due to the temperature controlled Bm-pPv phase transition.
Date Created
2020
Agent

Crustal Storage and Ascent Rates of the Mt. Shasta Primitive Magnesian Andesite

157887-Thumbnail Image.png
Description
Primitive arc magmas provide a critical glimpse into the geochemical evolution of subduction zone magmas, as they represent the most unadulterated mantle-derived magmas observed in nature in these tectonic environments and are the precursors of the more abundant andesites and

Primitive arc magmas provide a critical glimpse into the geochemical evolution of subduction zone magmas, as they represent the most unadulterated mantle-derived magmas observed in nature in these tectonic environments and are the precursors of the more abundant andesites and dacites typical in arcs. To date, the study of primitive arc magmas has largely focused on their origins at depth, while significantly less is known about pre-eruptive crustal storage and ascent history. This study examines the crustal storage and ascent history of the Mt. Shasta primitive magnesian andesite (PMA), the demonstrated dominant parent magma for the abundant mixed andesites erupted at Mt. Shasta. Petrographic and geochemical observations of the PMA identify a mid-crustal magma mixing event with a less evolved relative of the PMA recorded in multiple populations of reversely zoned clinopyroxene and orthopyroxene phenocrysts. Prior phase equilibrium experiments and thermobarometric calculations as part of this study suggest the PMA experienced storage, mixing with a less evolved version of itself, and subsequent crystallization at 5kbar and 975°C. Modeling of Fe-Mg interdiffusion between the rims and cores of the reversely-zoned clinopyroxene and orthopyroxenes suggest this mixing, crystallization and subsequent ascent occurred within 10 years, or ~2.9 (+6.5 / -2.5) years, prior to eruption. Ascent from 5kbar or ~15 km, with no meaningful shallower storage, suggests minimum crustal transit rates of ~5 km/year. This rate is comparable to only a couple of other similar types of crustal transit rates (and slower than the much faster, syn-eruptive ascent rates measured through methods like olivine-hosted melt embayment volatile gradients and U-series isotope measurements on other arc magmas). The results of this study help to constrain the pre-eruptive history and ascent rates of hydrous primitive arc magmas, illuminating their magmatic processes during ascent. When combined with geophysical signals of magma movement, mixing to eruption timescales such as this have the power to inform volcanic hazard models for monogenetic, cinder cone eruptions in the Southern Cascades.
Date Created
2019
Agent

High-Resolution Imaging of Earth's Lowermost Mantle

157625-Thumbnail Image.png
Description
This research investigates the fine scale structure in Earth's mantle, especially for the lowermost mantle, where strong heterogeneity exists. Recent seismic tomography models have resolved large-scale features in the lower mantle, such as the large low shear velocity provinces (LLSVPs).

This research investigates the fine scale structure in Earth's mantle, especially for the lowermost mantle, where strong heterogeneity exists. Recent seismic tomography models have resolved large-scale features in the lower mantle, such as the large low shear velocity provinces (LLSVPs). However, differences are present between different models, especially at shorter length scales. Fine scale structures both within and outside LLSVPs are still poorly constrained. The drastic growth of global seismic networks presents densely sampled seismic data in unprecedented quality and quantity. In this work, the Empirical Wavelet construction method has been developed to document seismic travel time and waveform information for a global shear wave seismic dataset. A dataset of 250K high-quality seismic records with comprehensive measurements is documented and made publicly available. To more accurately classify high quality seismic signal from the noise, 1.4 million manually labeled seismic records have been used to train a supervised classification model. The constructed model performed better than the empirical model deployed in the Empirical Wavelet method, with 87% in precision and 83% in recall. To utilize lower amplitude phases such as higher multiples of S and ScS waves, we have developed a geographic bin stacking method to improve signal-to-noise ratio. It is then applied to Sn waves up to n=6 and ScSn wave up to n=5 for both minor and major arc phases. The virtual stations constructed provide unique path sampling and coverage, vastly improving sampling in the Southern Hemisphere. With the high-quality dataset we have gathered, ray-based layer stripping iterative forward tomography is implemented to update a starting tomography model by mapping the travel time residuals along the ray from the surface down to the core mantle boundary. Final updated models with different starting tomography models show consistent updates, suggesting a convergent solution. The final updated models show higher resolution results than the starting tomography models, especially on intermediate-scale structures. The combined analyses and results in this work provide new tools and new datasets to image the fine-scale heterogeneous structures in the lower mantle, which advances our understanding of the dynamics and evolution of the Earth's mantle.
Date Created
2019
Agent

Changes in Microbial Communities and Geochemical Energy Supplies Across the Photosynthetic Fringe of Hot Spring Outflows in Yellowstone National Park

156969-Thumbnail Image.png
Description
Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging

Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in temperature from < 30°C to > 90°C, were sampled across the photosynthetic fringe, a transition in these outflows from exclusively chemosynthetic microbial communities to those that include photosynthesis. Illumina sequencing was performed to document the diversity of both prokaryotes and eukaryotes above, at, and below the photosynthetic fringe of twelve hot spring systems. Additionally, field measurements of dissolved oxygen, ferrous iron, and total sulfide were combined with laboratory analyses of sulfate, nitrate, total ammonium, dissolved inorganic carbon, dissolved methane, dissolved hydrogen, and dissolved carbon monoxide were used to calculate the available energy from 58 potential metabolisms. Results were ranked to identify those that yield the most energy according to the geochemical conditions of each system. Of the 46 samples taken across twelve systems, all showed the greatest energy yields using oxygen as the main electron acceptor, followed by nitrate. On the other hand, ammonium or ammonia, depending on pH, showed the greatest energy yields as an electron donor, followed by H2S or HS-. While some sequenced taxa reflect potential biotic participants in the sulfur cycle of these hot spring systems, many sample locations that yield the most energy from ammonium/ammonia oxidation have low relative abundances of known ammonium/ammonia oxidizers, indicating potentially untapped sources of chemotrophic energy or perhaps poorly understood metabolic capabilities of cultured chemotrophs.
Date Created
2018
Agent

Mars in the Visible to Near Infrared: Two Views of the Red Planet

Description
Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures

Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures or amorphous phases. Mars’ iron-rich and variably oxidized surface provides an ideal environment for detecting spectral variations that can be related to differences in surface dust cover or the composition of the underlying bedrock. Several imaging cameras sent to Mars include the capability to selectively filter incoming light to discriminate between surface materials.

At the coarse spatial resolution provided by the wide-angle Mars Color Imager (MARCI) camera aboard the Mars Reconnaissance Orbiter (MRO), regional scale differences in reflectance at all wavelengths are dominated by the presence or absence of Fe3+-rich dust. The dust cover in many regions is highly variable, often with strong seasonal dependence although major storm events can redistribute dust in ways that significantly alter the albedo of large-scale regions outside of the normal annual cycle. Surface dust reservoirs represent an important part of the martian climate system and may play a critical role in the growth of regional dust storms to planet-wide scales. Detailed investigation of seasonal and secular changes permitted by repeated MARCI imaging coverage have allowed the surface dust coverage of the planet at large to be described and have revealed multiannual replenishing of regions historically associated with the growth of storms.

From the ground, rover-based multispectral imaging acquired by the Mastcam cameras allows compositional discrimination between bedrock units and float material encountered along the Curiosity rover’s traverse across crater floor and lower Mt. Sharp units. Mastcam spectra indicate differences in primary mineralogy, the presence of iron-bearing alteration phases, and variations in iron oxidation state, which occur at specific locations along the rover’s traverse. These changes represent differences in the primary depositional environment and the action of later alteration by fluids circulating through fractures in the bedrock. Loose float rocks sample materials brought into the crater by fluvial or other processes. Mastcam observations provide important constraints on the geologic history of the Gale Crater site.
Date Created
2018
Agent