Microbial Functions and Interactions in Carbon Cycling of Amazon Peatlands

193681-Thumbnail Image.png
Description
Peatlands are significant global carbon sinks, where plant litter accumulation outpaces the rate of microbial degradation, which can result in significant emissions of methane and carbon dioxide. The Pastaza-Marañón foreland basin (PMFB) in the western Amazon contains the largest expanse

Peatlands are significant global carbon sinks, where plant litter accumulation outpaces the rate of microbial degradation, which can result in significant emissions of methane and carbon dioxide. The Pastaza-Marañón foreland basin (PMFB) in the western Amazon contains the largest expanse of tropical peatlands in South America, characterized by a diversity of soil properties, including pH and mineral concentration. The PMFB is predicted to decrease in its carbon capture capacity along with a rise in greenhouse gas emissions as the climate changes. Therefore, it is imperative to understand the impact that soil properties have on the abundance of functions, microbial physiology, and interspecies interactions between microbial community members. Metagenomic sequencing of soil samples from three geochemically distinct peatlands revealed site-specific enrichment of functions related to carbon, nitrogen, phosphorus, and sulfur cycling. Additionally, 519 metagenome-assembled genomes (MAGs) were recovered, revealing variations in microbial populations responsible for organic matter degradation and nutrient (nitrogen and sulfur) cycling across sites. From these MAGs, a novel family within the Bathyarchaeia was identified, Candidatus Paludivitaceae. This family is putatively capable of carboxydotrophy, able to use CO for energy and biomass. Subsequently they could detoxify the environment of CO benefiting other community members and playing an indirect role in modulating carbon cycling. To experimentally investigate interactions of peatland microbes, co-culture experiments assessed the impact of carbon substrates (4-hydroxybenzoic acid, mannitol, and arginine) on microbial interactions from heterotrophs isolated from two geochemically distinct peatlands. Results indicate substrate and peatland type significantly influence nature and frequency of microbial interactions. The response of microbial genera to carbon substrate also varied showing the role of metabolic traits and substrate preferences in determining growth patterns of microbes. This research advances our understanding of microbial ecology in tropical peatlands and better informs predictions as the climate changes.
Date Created
2024
Agent

Determining the effect of immune checkpoint blockade on macrophages against Lewis Lung Carcinoma

Description
Immunotherapy uses the body’s immune system to find and terminate cancerous cells, and has revolutionized cancer treatment. However, in certain cancers, such as lung cancer, less than 50% of patients respond to treatment. This is in part due to the

Immunotherapy uses the body’s immune system to find and terminate cancerous cells, and has revolutionized cancer treatment. However, in certain cancers, such as lung cancer, less than 50% of patients respond to treatment. This is in part due to the immunosuppressive tumor microenvironment, which is composed of factors that promote tumor growth and proliferation. Tumor cells create a highly immunosuppressive microenvironment by triggering the anti-inflammatory phenotype of myeloid immune cells, which largely consist of tumor-associated macrophages (TAMs). Anti-PD-1 and anti-PD-L1 immune checkpoint blockade therapy helps promote the T cell anti-tumor response by releasing the brakes on cytotoxic T-cells. However, it is unclear how TAMs respond to these immune checkpoint antibodies. Our lab hypothesizes that blockade of the PD-1/PD-L1 signaling pathway drives a pro-inflammatory macrophage phenotype. This hypothesis is supported by data generated in the B16F10 murine melanoma model, but it is unknown whether macrophage response to PD-L1 blockade is generalizable to other tumor contexts. Thus, the goal of the project is to determine the impact of immune checkpoint blockade on murine macrophages in the Lewis Lung Carcinoma (LLC) model. Using Flow Cytometry, macrophage phenotypes will be analyzed to confirm whether a pro- inflammatory or anti-tumor response is generated.
Date Created
2024-05
Agent

Expanding Membrane Based Isolation of Terrestrial Bacteria: Effects of Microaerophilic and Vitamin Proficient Conditions on Amazonian Peat

Description

Due to complex requirements and relationships found in terrestrial soil environments, less than 2% of bacteria has been cultured using traditional cultivation methods. The soil substrate membrane system (SSMS) is a method designed to overcome these limitations by incorporating the

Due to complex requirements and relationships found in terrestrial soil environments, less than 2% of bacteria has been cultured using traditional cultivation methods. The soil substrate membrane system (SSMS) is a method designed to overcome these limitations by incorporating the environmental soil as substrate. This work examines the improvements achievable through SSMS in combination with two variables known to affect microbial growth: microaerophilic conditions and vitamin availability, on Peruvian peatland soils of varying nutrient levels; poor (San Jorge), intermediate (Quistococha), and rich (Buena Vista). First, a preliminary study was performed to enhance the knowledge of SSMS applications. Following, soil samples were pre-incubated according to their treatments and inoculated onto membranes for 3 weeks. New membranes were inoculated from the first membrane's enrichment and incubated for 2 weeks. Verified microcolonies were transferred onto dilute media (dR2G 1:5 or RAVAN) through direct streaking and spreading of dilutions (10-3, 10-5, 10-7). Colony appearance was monitored with colonies being isolated and purified. Buena Vista produced the largest, most diverse microcolonies as well as the most isolates. Quistococha produced the fewest microcolonies and isolates and was the only Peatland with increased success rates in the control group. Nearly a 4:1 recovery of isolates was observed for Buena Vista's and San Jorge's treatment groups compared to their control groups. With nearly 300 isolates in isolation and sequencing, it can be concluded that SSMS improves the recovery of terrestrial bacteria, and ongoing work aims to identify the recovered isolates. 

Date Created
2023-05
Agent

Anaerobic Oxidation of Methane in Tres Rios Constructed Wetlands

Description

Methane (CH4) is a prominent greenhouse gas that contributes to the negative impacts of global warming and climate change, whose emissions have more than doubled since the Industrial Revolution primarily due to anthropogenic sources. The main pathways in which methane

Methane (CH4) is a prominent greenhouse gas that contributes to the negative impacts of global warming and climate change, whose emissions have more than doubled since the Industrial Revolution primarily due to anthropogenic sources. The main pathways in which methane moves through the environment are methanogenesis and methanotrophy. Methane is primarily generated by acetoclastic methanogenesis in wetlands while it can be oxidized both aerobically and anaerobically. Wetlands are important methane emission sources at 177 - 284 Tg CH4 year-1. The Tres Rios Wetland (TRW) is a constructed facility to complete nutrient removal of treated municipal wastewater, and has shown low emissions of methane. Whether such low emissions could be achieved through active anaerobic oxidation of methane (AOM) is not known, and the main objective of this work is to evaluate the rates of AOM in TRW. In this study an isotopic method and a mass balance method were utilized to determine the rate of AOM from top sediments found at Tres Rios at various locations and in two sets of sampling. The results showed that evidence of AOM occurred in the sediments of both sampling events conducted. The first sampling set showed evidence of AOM at all locations along a transect, showing that oxidation of methane is indeed occurring in Tres Rios sediments. Evidence from both methodologies suggested that high methanogenesis rates occurred at the outside location closest to the water. The second sampling set showed that the highest rate of AOM occurred at the outlet location, with the lowest rate occurring in the middle location. DNA extractions and PCR images resulted in a poor DNA yield, and inability to extract DNA. It was determined that the isotopic approach was less accurate than the mass balance approach due to unexpected delta CH4 values. It was determined that dilutions of CH4 ppm lead to less accurate isotopic measurements needed to estimate AOM rates using a 13C pulse technique. Literature review suggests that factors including water presence, temperature, redox potential, and plant presence can be influential in the oxidation of methane. This AOM assay can be beneficial in better understanding how methane cycles at Tres Rios, and can provide opportunities for future research in determining which factors influence the oxidation of methane in different locations throughout wetlands.

Date Created
2023-05
Agent

Characterization and Manipulation of Microbiomes From Arid Landfills for Improved Methane Production

171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
Date Created
2022
Agent

Microbial Communities and Their Intermediary Ecosystem Metabolism Across Northern Peatlands

171775-Thumbnail Image.png
Description
Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland

Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra (Daring Lake, Canada) to boreal forest (Lutose, Canada) to temperate broadleaf and mixed forest (Bog Lake, MN and Chicago Bog, NY) biomes to assess patterns of microbial abundance across the climate gradient. Principal component regression analysis of the microbial community and environmental variables determined that mean annual temperature (MAT) (r2=0.85), mean annual precipitation (MAP) (r2=0.88), and soil temperature (r2=0.77), were the top significant drivers of microbial community composition (p < 0.001). Niche breadth analysis revealed the relative abundance of Intrasporangiaceae, Methanobacteriaceae and Candidatus Methanoflorentaceae fam. nov. to increase when MAT and MAP decrease. The same analysis showed Spirochaetaceae, Methanosaetaceae and Methanoregulaceae to increase in relative abundance when MAP, soil temperature and MAT increased, respectively. These findings indicated that climate variables were the strongest predictors of microbial community composition and that certain taxa, especially methanogenic families demonstrate distinct patterns across the climate gradient. To evaluate microbial production of methanogenic substrates, I carried out High Resolution-DNA-Stable Isotope Probing (HR-DNA-SIP) to evaluate the active portion of the community’s intermediary ecosystem metabolic processes. HR-DNA-SIP revealed several challenges in efficiency of labelling and statistical identification of responders, however families like Veillonellaceae, Magnetospirillaceae, Acidobacteriaceae 1, were found ubiquitously active in glucose amended incubations. Differences in metabolic byproducts from glucose amendments show distinct patterns in acetate and propionate accumulation across sites. Families like Spirochaetaceae and Sphingomonadaceae were only found to be active in select sites of propionate amended incubations. By-product analysis from propionate incubations indicate that the northernmost sites were acetate-accumulating communities. These results indicate that microbial communities found in poor fen northern peatlands are strongly influenced by climate variables predicted to change under current climate scenarios. I have identified patterns of relative abundance and activity of select microbial taxa, indicating the potential for climate variables to influence the metabolic pathway in which carbon moves through peatland systems.
Date Created
2022
Agent

Role of Particle-Associated Bacteria in Aggregate Formation in the Ocean

171556-Thumbnail Image.png
Description
The biological carbon pump in the ocean is initiated by the photosynthetic fixation of atmospheric carbon dioxide into particulate or dissolved organic carbon by phytoplankton. A fraction of this organic matter sinks to depth mainly in the form of microaggregates

The biological carbon pump in the ocean is initiated by the photosynthetic fixation of atmospheric carbon dioxide into particulate or dissolved organic carbon by phytoplankton. A fraction of this organic matter sinks to depth mainly in the form of microaggregates (5-60 μm) and visible macroaggregates. These aggregates are composed of cells, minerals, and other sources of organic carbon. Exopolymeric substances (EPS) are exudated by heterotrophic bacteria and phytoplankton and may form transparent exopolymeric particles (TEP) that act as a glue-like matrix for marine aggregates. Heterotrophic bacteria have been found to influence the aggregation of phytoplankton and in some cases result in an increase in TEP production, but it is unclear if marine heterotrophic bacteria can produce TEP and how they contribute to aggregation. Pseudoalteromonas carrageenovora, Vibrio thalassae, and Marinobacter adhaerens HP15 are heterotrophic marine bacteria that were found associated with sinking particles in an oligotrophic gyre station in the subtropical North Atlantic. These bacteria were grown in axenic cultures to determine growth, TEP production, and aggregation. They were also inoculated into roller tanks used to simulate open ocean conditions to determine their ability to form macroaggregates. Treatments with added kaolinite clay simulated aeolic dust input from the Sahara. M. adhaerens HP15 had the highest TEP concentration but the lowest cell-normalized TEP production at all growth stages compared to the other bacteria. Additionally, M. adhaerens HP15 also had the lowest microaggregate formation. The cell-normalized TEP production and microaggregate formation was not significantly different between P. carrageenovora and V. thalassae. All bacteria formed visible macroaggregates in roller tanks with clay addition and exhibited high sinking velocities (150-1200 m d-1) that are comparable to those of aggregates formed by large mineral ballasted phytoplankton. Microaggregates in the clay treatments declined during incubation, indicating that they aggregated to form the macroaggregates. The findings from this study show for the first time that heterotrophic bacteria can contribute to aggregation and the export of organic carbon to depth in the ocean.
Date Created
2022
Agent

Elucidating the Mechanisms of Aggregation in Marine Pico- and Nanophytoplankton

168445-Thumbnail Image.png
Description
The efficiency of the ocean’s biological carbon pump is mediated by fast-sinking particles that quickly settle out of the euphotic zone. These particles are conventionally associated with micro- (> 20 µm) sized diatoms and coccolithophorids, thought to efficiently transport carbon

The efficiency of the ocean’s biological carbon pump is mediated by fast-sinking particles that quickly settle out of the euphotic zone. These particles are conventionally associated with micro- (> 20 µm) sized diatoms and coccolithophorids, thought to efficiently transport carbon to depth owing to their dense mineral structures, while pico- (< 2 µm) and nanophytoplankton (2-20 µm) are considered to contribute negligibly due to their small size and low sinking speed. Despite burgeoning evidence of their export, the mechanisms behind it remain poorly understood. The objective of this dissertation is to acquire a mechanistic understanding of the contribution of pico- and nanophytoplankton to particle fluxes. I tested the hypotheses that pico- and nanophytoplankton may be exported via the following pathways: 1) physical aggregation due to the production of sticky Transparent Exopolymeric Particles (TEP), mediated by interactions with heterotrophic bacteria, 2) attachment to lithogenic minerals, and 3) repackaging by zooplankton. I found that despite the traditional view of being too small to sink, pico- and nanophytoplankton form aggregates rich in TEP, allowing cells to scavenge lithogenic minerals and thus increase their effective size and density. I discovered that interactions with heterotrophic bacteria were significant in mediating the process of aggregation by influencing the production and/or the composition of the phytoplankton-derived TEP. Bacteria differentially influenced aggregation and TEP production; some species enhanced aggregation without affecting TEP production, and vice-versa. Finally, by determining the microbial composition of sinking particles in an open-ocean site, I found pico- and nanophytoplankton significantly associated with particles sourced from crustaceous zooplankton, suggesting that their export is largely mediated by mesozooplankton. Overall, I show that the hypothesized mechanisms of pico- and nanophytoplankton export are not mutually exclusive, but instead occur subsequently. Given the right conditions for their aggregation in the natural environment, such as interactions with aggregation-enhancing heterotrophic bacteria and/or the presence of lithogenic minerals, their cells and aggregates can escape remineralization within the euphotic zone, and thus be susceptible to grazing by mesozooplankton export within fecal pellets. The results of this dissertation provide a mechanistic framework for the contribution of pico- and nanophytoplankton to ocean particle fluxes.
Date Created
2021
Agent

Ecological Diversity of Methanotrophs in Amazon Peatlands

166174-Thumbnail Image.png
Description

Tropical peatlands play a critical role in global carbon storage and greenhouse gas flux, yet the role of microbial communities in these ecosystems remains poorly understood. Methane-oxidizing bacteria (MOB) are considered an efficient biological filter for methane and can mitigate

Tropical peatlands play a critical role in global carbon storage and greenhouse gas flux, yet the role of microbial communities in these ecosystems remains poorly understood. Methane-oxidizing bacteria (MOB) are considered an efficient biological filter for methane and can mitigate its release into the atmosphere, facilitating an ecosystem’s capacity to become a net sink. Prokaryotic gene amplicon surveys targeting a unique biomarker instead of a universal one (i.e., 16S rRNA) can reveal a more comprehensive analysis of microbial communities with ecological functions (i.e., methanotrophy). The alpha subunit of particulate methane monooxygenase (pmoA) is commonly targeted as a phylogenetic biomarker for both aerobic and anaerobic MOB. Here, we tested three different primer sets and investigated their ability to assess methanotrophic diversity across three biogeochemically distinct tropical peatland sites in the Pastaza-Marañón foreland basin (PMFB) in western Amazonia. The results showed that sequencing using 16S rRNA and pmoA genes revealed differences in MOB taxonomic identification in 21 tropical peat soils. Beta diversity analysis of pmoA genes suggests that site location is not the main driver of differences in MOB community makeup. This work offers insight into the strengths and weaknesses of targeted gene amplicon surveys using 16S and pmoA from tropical peat soils as a case study.

Date Created
2022-05
Agent

Culturing Methanogenic Archaea from Tropical Peatlands: Identifying Alternative Approaches to Retrieve Broader Isolate Diversity

161754-Thumbnail Image.png
Description
Methanogens anaerobically metabolize simple carbon compounds coupled with an electron donor and produce methane in a process known as methanogenesis. While their importance in anoxic ecosystems and their greenhouse gas emissions are known, less is known about their diverse members.

Methanogens anaerobically metabolize simple carbon compounds coupled with an electron donor and produce methane in a process known as methanogenesis. While their importance in anoxic ecosystems and their greenhouse gas emissions are known, less is known about their diverse members. This is in part due to limited culture-dependent studies as a consequence of the difficulty to culture and isolate them under laboratory conditions. Current methods in methanogen isolation require lengthy protocols, expensive equipment, can be easily contaminated, and even if a successful isolation is completed, traditional methods are biased towards only a few species of methanogens- leaving much of this community unsampled and thus unrepresented. New approaches in the isolation of methanogens need to be investigated in order to circumvent these obstacles. Here, I evaluated the effects of different strategies and alternative methods with the goal of increasing the diversity of recovered methanogens from Amazon peatlands as a study case. The results show that: a) through the use of different antibiotics the bacterial community makeup can be altered and lead to different methanogenic enrichments, some antibiotics reliably increase methanogenesis in all study sites, others only enhance it in some sites, while some have a low rate of methanogenesis enriching novel slow growers, b) the use of different substrates has less of an effect on methane production rates, however the complex substrate butyrate leads to consistent late stimulation, c) altering media components (reducing agent and overall geochemical background) for Amazon conditions would lead to a shorter time to isolation, d) and multiple methanogenic enrichments were achieved building on variable conditions and can lead to novel Amazon lineages. Molecular data is offering a more detailed view of bacteria and methanogens increasing or decreasing in response to treatments. Overall, it is shown that combining alternative approaches that manipulate interactions, metabolic substrate availability and culturing conditions could lead to more diverse isolation outputs from methanogenic cultures.
Date Created
2021
Agent