Extreme Seismic Anomalies near Earth’s Core Mantle Boundary

158014-Thumbnail Image.png
Description
The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates

The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates seismic anomalies inside Earth’s lowermost mantle and focuses on patch-like ultra-low velocity zones (ULVZs) found on Earth’s core-mantle boundary (CMB). Firstly, all previous ULVZ studies are compiled and ULVZ locations on the CMB are digitized. The result is a database, which is publicly available online. A key finding is that there is not a simple mapping between the locations of the observed ULVZs and the large low velocities provinces (LLVPs). Instead, ULVZs are more likely to occur near LLVP boundaries. This spatial correlation study supports a compositionally distinct origin for at least some ULVZs. Next, the seismic structure of the basal mantle beneath the Central America is investigated. This region hosts present and past subducted slabs, which could have brought compositionally distinct oceanic basalt all the way down to the CMB. The waveform distortions of a core-reflected seismic phase and a forward modeling method are used to constrain the causes of the CMB structures. In addition to ULVZ structures, isolated patches of thin zones with shear velocity increased by over 10% relative to background mantle are found for the first time. Ultra-high velocity zones (UHVZs) are interspersed with ULVZs and could be caused by subducted mid-ocean ridge basalt (MORB) that undergoes partial melting and melt segregation. Fe-rich partial melt of MORB can form ULVZs, and silica polymorphs (SiO2) and calcium-perovskite (CaPv) rich solid residue can explain the UHVZs. Finally, large-scale heterogeneities in the lowermost mantle are investigated using S waveform broadening observations. Several basal layer models are case-studied via synthetic calculations. S wave arrivals received at a distance larger than 80˚ in a global dataset from large earthquakes between the years 1994 and 2017 are examined and S waveform broadenings are documented. This approach exploits large distance data for the first time, and therefore is complementary to previous studies in terms of sampling locations. One possible explanation of S waveform broadening is velocity discontinuity inside the D″ layer due to the temperature controlled Bm-pPv phase transition.
Date Created
2020
Agent

Shock metamorphism in ordinary chondrites: constraining pressure and temperature history

154970-Thumbnail Image.png
Description
Shock metamorphism in meteorites constrains the impact histories of asteroids and planets. Shock-induced high-pressure (HP) minerals can provide more precise estimates of shock conditions than shock-induced deformation effects. In this research, I use shock features, particularly HP minerals, in ordinary-chondrite

Shock metamorphism in meteorites constrains the impact histories of asteroids and planets. Shock-induced high-pressure (HP) minerals can provide more precise estimates of shock conditions than shock-induced deformation effects. In this research, I use shock features, particularly HP minerals, in ordinary-chondrite samples to constrain not only shock pressures but also the pressure-temperature-time (P-T-t) paths they experienced.

Highly shocked L5/6 chondrites Acfer 040, Mbale, NWA 091 and Chico and LL6 chondrite NWA 757 were used to investigate a variety of shock pressures and post-shock annealing histories. NWA 757 is the only highly shocked LL chondrite that includes abundant HP minerals. The assemblage of ringwoodite and majoritic garnet indicates an equilibration shock pressure of ~20 GPa, similar to many strongly shocked L chondrites. Acfer 040 is one of the only two chondrite samples with bridgmanite (silicate perovskite), suggesting equilibration pressure >25 GPa. The bridgmanite, which is unstable at low-pressure, was mostly vitrified during post-shock cooling. Mbale demonstrates an example of elevated post-shock temperature resulting in back-transformation of ringwoodite to olivine. In contrast, majoritic garnet in Mbale survives as unambiguous evidence of strong shock. In these two samples, HP minerals are exclusively associated with shock melt, indicating that elevated shock temperatures are required for rapid mineral transformations during the transient shock pulse. However, elevated post-shock temperatures can destroy HP minerals: in temperature sequence from bridgmanite to ringwoodite then garnet. NWA 091 and Chico are impact melt breccias with pervasive melting, blackening of silicates, recrystallization of host rock but no HP minerals. These features indicate near whole-rock-melting conditions. However, the elevated post-shock temperatures of these samples has annealed out HP signatures. The observed shock features result from a complex P-T-t path and may not directly reflect the peak shock pressure. Although HP minerals provide robust evidence of high pressure, their occurrence also requires high shock temperatures and rapid cooling during the shock pulse. The most highly shocked samples lack HP signatures but have abundant high-temperature features formed after pressure release.
Date Created
2016
Agent