158671-Thumbnail Image.png
Description
Mantle derived basalts along the entirety of the Earth’s Mid-Ocean Ridge (MOR) spreading centers are continuously altered by seawater, allowing the hydrosphere to subsume energy and exchange mass with the deep, slowly cooling Earth. Compositional heterogeneities inherent to these basalts—the

Mantle derived basalts along the entirety of the Earth’s Mid-Ocean Ridge (MOR) spreading centers are continuously altered by seawater, allowing the hydrosphere to subsume energy and exchange mass with the deep, slowly cooling Earth. Compositional heterogeneities inherent to these basalts—the result of innumerable geophysical and geochemical processes in the mantel and crust—generate spatial variation in the equilibrium states toward which these water-rock environments cascade. This alteration results in a unique distribution of precipitate assemblages, hydrothermal fluid chemistries, and energetic landscapes among ecosystems rooted within and above the seafloor. The equilibrium states for the full range of basalt compositional heterogeneity present today are calculated over all appropriate temperatures and extents of reaction with seawater, along with the non-equilibrium mixtures generated when hydrothermal fluids mix back into seawater. These mixes support ancient and diverse ecosystems fed not by the energy of the sun, but by the geochemical energy of the Earth. Facilitated by novel, high throughout code, this effort has yielded a high-resolution compositional database that is mapped back onto all ridge systems. By resolving the chemical and energetic consequences of basalt-seawater interaction to sub-ridge scales, alteration features that are globally homogeneous can be distinguished from those that are locally unique, guiding future field observations with testable geochemical and biochemical predictions.


Download restricted.
Download count: 6

Details

Title
  • Thermodynamic Cartography in Basalt-Hosted Hydrothermal Systems
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Doctoral Dissertation Geological Sciences 2020

    Machine-readable links