Refining Earth’s Ocean Oxygenation History using Molybdenum and Thallium Isotopes

158231-Thumbnail Image.png
Description
Isotope ratios of some trace metals have proven useful for tracking Earth’s ocean oxygenation history. As the limitations of some of these isotope systems are realized, it becomes increasingly important to develop new and complementary systems. This dissertation examines the

Isotope ratios of some trace metals have proven useful for tracking Earth’s ocean oxygenation history. As the limitations of some of these isotope systems are realized, it becomes increasingly important to develop new and complementary systems. This dissertation examines the utility of molybdenum (98Mo) and thallium (205Tl) isotope compositions preserved in ancient marine shales to track past ocean oxygenation. My approach is as follows: (1) as an initial exercise, apply the well-established Mo isotope system to a set of ancient shales; (2) validate the use of the newly developed Tl isotope system; and finally (3) examine the potential of applying Mo and Tl isotopes in tandem.

Increasingly heavier 98Mo are found in shales deposited during the Neoarchean (2,800 to 2,500 million years ago, or Ma), which would be a predicted consequence of progressive ocean oxygenation across this timeframe. Increasingly heavier 205Tl across a well-documented Mesozoic Oceanic Anoxic Event (~94 Ma), on the other hand, would be a predicted consequence of progressive ocean de-oxygenation. An anti-correlation in the first combined application of Mo and Tl isotopes in ancient shales provides a strong fingerprint for previously unrecognized levels of ocean oxygenation at ~2,500 Ma. Lastly, neither 98Mo or 205Tl behave as predicted in shales deposited during three Ediacaran Ocean Oxygenation Events (~635 Ma, ~580 Ma, and ~560 Ma). These unexpected trends are due, at least in part, to local-scale overprints that must be taken into consideration when pairing together Mo and Tl isotopes in shales.

The ability of the Mo and Tl isotope systems to track changes in past ocean oxygenation is confirmed in this dissertation. Both isotope systems have the potential to track these changes independently, but their combined utility is particularly powerful. Under ideal conditions, their combined application can provide an even more robust fingerprint for changes in past ocean oxygenation. Even under non-ideal conditions, their combined application makes it possible to decipher local-scale overprints from signals of past ocean oxygenation. It is therefore ideal, whenever possible, to measure both 98Mo and 205Tl in the same shale samples to assess past changes in ocean oxygenation.
Date Created
2020
Agent