Advancing Precision in Medical Diagnostics using AI Expert-Guided Transformers for Enhanced Accuracy

193662-Thumbnail Image.png
Description
In the realm of medical diagnostics, achieving heightened accuracy is paramount, leading to the meticulous refinement of AI Models through expert-guided tuning aiming to bolster the precision by ensuring their adaptability to complex datasets and optimizing outcomes across various healthcare

In the realm of medical diagnostics, achieving heightened accuracy is paramount, leading to the meticulous refinement of AI Models through expert-guided tuning aiming to bolster the precision by ensuring their adaptability to complex datasets and optimizing outcomes across various healthcare sectors. By incorporating expert knowledge into the fine-tuning process, these advanced models become proficient at navigating the intricacies of medical data, resulting in more precise and dependable diagnostic predictions. As healthcare practitioners grapple with challenges presented by conditions requiring heightened sensitivity, such as cardiovascular diseases, continuous blood glucose monitoring, the application of nuanced refinement in Transformer Models becomes indispensable. Temporal data, a common feature in medical diagnostics, presents unique challenges for Transformer Models characterized by sequential observations over time, requiring models to capture intricate temporal dependencies and complex patterns effectively. In the study, two pivotal healthcare scenarios are delved into: the detection of Coronary Artery Disease (CAD) using Stress ECGs and the identification of psychological stress using Continuous Glucose Monitoring (CGM) data. The CAD dataset was obtained from the Mayo Clinic Integrated Stress Center (MISC) database, which encompassed 100,000 Exercise Stress ECG signals (n=1200), sourced from multiple Mayo Clinic facilities. For the CGM scenario, expert knowledge was utilized to generate synthetic data using the Bergman minimal model, which was then fed to the transformers for classification. Implementation in the CAD example yielded a remarkable 28% Positive Predictive Value (PPV) improvement over the current state-of-the-art, reaching an impressive 91.2%. This significant enhancement demonstrates the efficacy of the approach in enhancing diagnostic accuracy and underscores the transformative impact of expert-guided fine-tuning in medical diagnostics.
Date Created
2024
Agent

Differential Privacy Protection via Inexact Data Cloning

187820-Thumbnail Image.png
Description
With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful,

With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful, accurate information and protecting it at the same time has been challenging, especially in healthcare. The data owners lack an automated resource that provides layers of protection on a published dataset with validated statistical values for usability. Differential privacy (DP) has gained a lot of attention in the past few years as a solution to the above-mentioned dual problem. DP is defined as a statistical anonymity model that can protect the data from adversarial observation while still providing intended usage. This dissertation introduces a novel DP protection mechanism called Inexact Data Cloning (IDC), which simultaneously protects and preserves information in published data while conveying source data intent. IDC preserves the privacy of the records by converting the raw data records into clonesets. The clonesets then pass through a classifier that removes potential compromising clonesets, filtering only good inexact cloneset. The mechanism of IDC is dependent on a set of privacy protection metrics called differential privacy protection metrics (DPPM), which represents the overall protection level. IDC uses two novel performance values, differential privacy protection score (DPPS) and clone classifier selection percentage (CCSP), to estimate the privacy level of protected data. In support of using IDC as a viable data security product, a software tool chain prototype, differential privacy protection architecture (DPPA), was developed to utilize the IDC. DPPA used the engineering security mechanism of IDC. DPPA is a hub which facilitates a market for data DP security mechanisms. DPPA works by incorporating standalone IDC mechanisms and provides automation, IDC protected published datasets and statistically verified IDC dataset diagnostic report. DPPA is currently doing functional, and operational benchmark processes that quantifies the DP protection of a given published dataset. The DPPA tool was recently used to test a couple of health datasets. The test results further validate the IDC mechanism as being feasible.
Date Created
2023
Agent

A Blockchain-Based Approach for Tracing Security Requirements for Large Scale and Complex Software Development

171782-Thumbnail Image.png
Description
Security requirements are at the heart of developing secure, invulnerable software. Without embedding security principles in the software development life cycle, the likelihood of producing insecure software increases, putting the consumers of that software at great risk. For large-scale software

Security requirements are at the heart of developing secure, invulnerable software. Without embedding security principles in the software development life cycle, the likelihood of producing insecure software increases, putting the consumers of that software at great risk. For large-scale software development, this problem is complicated as there may be hundreds or thousands of security requirements that need to be met, and it only worsens if the software development project is developed by a distributed development team. In this thesis, an approach is provided for software security requirement traceability for large-scale and complex software development projects being developed by distributed development teams. The approach utilizes blockchain technology to improve the automation of security requirement satisfaction and create a more transparent and trustworthy development environment for distributed development teams. The approach also introduces immutability, auditability, and non-repudiation into the security requirement traceability process. The approach is evaluated against existing software security requirement solutions.
Date Created
2022
Agent

Machine Learning Methods for Prediction of Physical System Behavior

171654-Thumbnail Image.png
Description
The advancement and marked increase in the use of computing devices in health care for large scale and personal medical use has transformed the field of medicine and health care into a data rich domain. This surge in the availability

The advancement and marked increase in the use of computing devices in health care for large scale and personal medical use has transformed the field of medicine and health care into a data rich domain. This surge in the availability of data has allowed domain experts to investigate, study and discover inherent patterns in diseases from new perspectives and in turn, further the field of medicine. Storage and analysis of this data in real time aids in enhancing the response time and efficiency of doctors and health care specialists. However, due to the time critical nature of most life- threatening diseases, there is a growing need to make informed decisions prior to the occurrence of any fatal outcome. Alongside time sensitivity, analyzing data specific to diseases and their effects on an individual basis leads to more efficient prognosis and rapid deployment of cures. The primary challenge in addressing both of these issues arises from the time varying and time sensitive nature of the data being studied and in the ability to successfully predict anomalous events using only observed data.This dissertation introduces adaptive machine learning algorithms that aid in the prediction of anomalous situations arising due to abnormalities present in patients diagnosed with certain types of diseases. Emphasis is given to the adaptation and development of algorithms based on an individual basis to further the accuracy of all predictions made. The main objectives are to learn the underlying representation of the data using empirical methods and enhance it using domain knowledge. The learned model is then utilized as a guide for statistical machine learning methods to predict the occurrence of anomalous events in the near future. Further enhancement of the learned model is achieved by means of tuning the objective function of the algorithm to incorporate domain knowledge. Along with anomaly forecasting using multi-modal data, this dissertation also investigates the use of univariate time series data towards the prediction of onset of diseases using Bayesian nonparametrics.
Date Created
2022
Agent

Improving Ontology Alignment Using Machine Learning Techniques

171617-Thumbnail Image.png
Description
Ontologies play an important role in storing and exchanging digitized data. As the need for semantic web information grows, organizations from around the globe has defined ontologies in different domains to better represent the data. But different organizations define ontologies

Ontologies play an important role in storing and exchanging digitized data. As the need for semantic web information grows, organizations from around the globe has defined ontologies in different domains to better represent the data. But different organizations define ontologies of the same entity in their own way. Finding ontologies of the same entity in different fields and domains has become very important for unifying and improving interoperability of data between these multiple domains. Many different techniques have been used over the year, including human assisted, automated and hybrid. In recent years with the availability of many machine learning techniques, researchers are trying to apply these techniques to solve the ontology alignment problem across different domains. In this study I have looked into the use of different machine learning techniques such as Support Vector Machine, Stochastic Gradient Descent, Random Forest etc. for solving ontology alignment problem with some of the most commonly used datasets found from the famous Ontology Alignment Evaluation Initiative (OAEI). I have proposed a method OntoAlign which demonstrates the importance of using different types of similarity measures for feature extraction from ontology data in order to achieve better results for ontology alignment.
Date Created
2022
Agent

Anomaly Mining and Visualization of Autonomous Aerial Vehicles

171520-Thumbnail Image.png
Description
The drone industry is worth nearly 50 billion dollars in the public sector, and drone flight anomalies can cost up to 12 million dollars per drone. The project's objective is to explore various machine-learning techniques to identify anomalies in drone

The drone industry is worth nearly 50 billion dollars in the public sector, and drone flight anomalies can cost up to 12 million dollars per drone. The project's objective is to explore various machine-learning techniques to identify anomalies in drone flight and express these anomalies effectively by creating relevant visualizations. The research goal is to solve the problem of finding anomalies inside drones to determine severity levels. The solution was visualization and statistical models, and the contribution was visualizations, patterns, models, and the interface.
Date Created
2022
Agent

Vehicle Re-identification Using a Multi-View Vehicle Dataset

168842-Thumbnail Image.png
Description
There has been an explosion in the amount of data on the internet because of modern technology – especially image data – as a consequence of an exponential growth in the number of cameras existing in the world right now;

There has been an explosion in the amount of data on the internet because of modern technology – especially image data – as a consequence of an exponential growth in the number of cameras existing in the world right now; from more extensive surveillance camera systems to billions of people walking around with smartphones in their pockets that come with built-in cameras. With this sudden increase in the accessibility of cameras, most of the data that is getting captured through these devices is ending up on the internet. Researchers soon took leverage of this data by creating large-scale datasets. However, generating a dataset – let alone a large-scale one – requires a lot of man-hours. This work presents an algorithm that makes use of optical flow and feature matching, along with utilizing localization outputs from a Mask R-CNN, to generate large-scale vehicle datasets without much human supervision. Additionally, this work proposes a novel multi-view vehicle dataset (MVVdb) of 500 vehicles which is also generated using the aforementioned algorithm.There are various research problems in computer vision that can leverage a multi-view dataset, e.g., 3D pose estimation, and 3D object detection. On the other hand, a multi-view vehicle dataset can be used for a 2D image to 3D shape prediction, generation of 3D vehicle models, and even a more robust vehicle make and model recognition. In this work, a ResNet is trained on the multi-view vehicle dataset to perform vehicle re-identification, which is fundamentally similar to a vehicle make and recognition problem – also showcasing the usability of the MVVdb dataset.
Date Created
2022
Agent

PMU-based Online Voltage Stability Assessment and Power Flow Tools for Power Systems

168477-Thumbnail Image.png
Description
Power systems are transforming into more complex and stressed systems each day. These stressed conditions could lead to a slow decline in the power grid's voltage profile and sometimes lead to a partial or total blackout. This phenomenon can be

Power systems are transforming into more complex and stressed systems each day. These stressed conditions could lead to a slow decline in the power grid's voltage profile and sometimes lead to a partial or total blackout. This phenomenon can be identified by either solving a power flow problem or using measurement-based real-time monitoring algorithms. The first part of this thesis focuses on proposing a robust power flow algorithm for ill-conditioned systems. While preserving the stable nature of the fixed point (FP) method, a novel distributed FP equation is proposed to calculate the voltage at each bus. The proposed algorithm's performance is compared with existing methods, showing that the proposed method can correctly find the solutions when other methods cannot work due to high condition number matrices. It is also empirically shown that the FP algorithm is more robust to bad initialization points. The second part of this thesis focuses on identifying the voltage instability phenomenon using real-time monitoring algorithms. This work proposes a novel distributed measurement-based monitoring technique called voltage stability index (VSI). With the help of PMUs and communication of voltage phasors between neighboring buses, the processors embedded at each bus in the smart grid perform simultaneous online computations of VSI. VSI enables real-time identification of the system's critical bus with minimal communication infrastructure. Its benefits include interpretability, fast computation, and low sensitivity to noisy measurements. Furthermore, this work proposes the ``local static-voltage stability index" (LS-VSI) that removes the minimal communication requirement in VSI by requiring only one PMU at the bus of interest. LS-VSI also solves the issue of Thevenin equivalent parameter estimation in the presence of noisy measurements. Unlike VSI, LS-VSI incorporates the ZIP load models and load tap changers (LTCs) and successfully identifies the bifurcation point considering ZIP loads' impact on voltage stability. Both VSI and LS-VSI are useful to monitor the voltage stability margins in real-time using the PMU measurements from the field. However, they cannot indicate the onset of voltage emergency situations. The proposed LD-VSI uses the dynamic measurements of the power system to identify the onset of a voltage emergency situation with an alarm. Compared to existing methods, it is shown that it is more robust to PMU measurement noise and can also identify the voltage collapse point while the existing methods have issues with the same.
Date Created
2021
Agent

Brain-Based Authentication Systems and Brain Liveness Problem

161998-Thumbnail Image.png
Description
In recent years, brain signals have gained attention as a potential trait for biometric-based security systems and laboratory systems have been designed. A real-world brain-based security system requires to be usable, accurate, and robust. While there have been developments in

In recent years, brain signals have gained attention as a potential trait for biometric-based security systems and laboratory systems have been designed. A real-world brain-based security system requires to be usable, accurate, and robust. While there have been developments in these aspects, there are still challenges to be met. With regard to usability, users need to provide lengthy amount of data compared to other traits such as fingerprint and face to get authenticated. Furthermore, in the majority of works, medical sensors are used which are more accurate compared to commercial ones but have a tedious setup process and are not mobile. Performance wise, the current state-of-art can provide acceptable accuracy on a small pool of users data collected in few sessions close to each other but still falls behind on a large pool of subjects over a longer time period. Finally, a brain security system should be robust against presentation attacks to prevent adversaries from gaining access to the system. This dissertation proposes E-BIAS (EEG-based Identification and Authentication System), a brain-mobile security system that makes contributions in three directions. First, it provides high performance on signals with shorter lengths collected by commercial sensors and processed with lightweight models to meet the computation/energy capacity of mobile devices. Second, to evaluate the system's robustness a novel presentation attack was designed which challenged the literature's presumption of intrinsic liveness property for brain signals. Third, to bridge the gap, I formulated and studied the brain liveness problem and proposed two solution approaches (model-aware & model agnostic) to ensure liveness and enhance robustness against presentation attacks. Under each of the two solution approaches, several methods were suggested and evaluated against both synthetic and manipulative classes of attacks (a total of 43 different attack vectors). Methods in both model-aware and model-agnostic approaches were successful in achieving an error rate of zero (0%). More importantly, such error rates were reached in face of unseen attacks which provides evidence of the generalization potentials of the proposed solution approaches and methods. I suggested an adversarial workflow to facilitate attack and defense cycles to allow for enhanced generalization capacity for domains in which the decision-making process is non-deterministic such as cyber-physical systems (e.g. biometric/medical monitoring, autonomous machines, etc.). I utilized this workflow for the brain liveness problem and was able to iteratively improve the performance of both the designed attacks and the proposed liveness detection methods.
Date Created
2021
Agent

Forward and Backward Machine Learning for Modeling Copper Diffusion in Cadmium Telluride Solar Cells

161835-Thumbnail Image.png
Description
To optimize solar cell performance, it is necessary to properly design the doping profile in the absorber layer of the solar cell. For CdTe solar cells, Cu is used for providing p-type doping. Hence, having an estimator that, given the

To optimize solar cell performance, it is necessary to properly design the doping profile in the absorber layer of the solar cell. For CdTe solar cells, Cu is used for providing p-type doping. Hence, having an estimator that, given the diffusion parameter set (time and Temperature) and the doping concentration at the junction, gives the junction depth of the absorber layer, is essential in the design process of CdTe solar cells (and other cell technologies). In this work it is called a forward (direct) estimation process. The backward (inverse) problem then is the one in which, given the junction depth and the desired concentration of Cu doping at the CdTe/CdS heterointerface, the estimator gives the time and/or the Temperature needed to achieve the desired doping profiles. This is called a backward (inverse) estimation process. Such estimators, both forward and backward, do not exist in the literature for solar cell technology. To train the Machine Learning (ML) estimator, it is necessary to first generate a large set of data that are obtained by using the PVRD-FASP Solver, which has been validated via comparison with experimental values. Note that this big dataset needs to be generated only once. Next, one uses Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) to extract the actual Cu doping profiles that result from the process of diffusion, annealing, and cool-down in the fabrication sequence of CdTe solar cells. Two deep learning neural network models are used: (1) Multilayer Perceptron Artificial Neural Network (MLPANN) model using a Keras Application Programmable Interface (API) with TensorFlow backend, and (2) Radial Basis Function Network (RBFN) model to predict the Cu doping profiles for different Temperatures and durations of the annealing process. Excellent agreement between the simulated results obtained with the PVRD-FASP Solver and the predicted values is obtained. It is important to mention here that it takes a significant amount of time to generate the Cu doping profiles given the initial conditions using the PVRD-FASP Solver, because solving the drift-diffusion-reaction model is mathematically a stiff problem and leads to numerical instabilities if the time steps are not small enough, which, in turn, affects the time needed for completion of one simulation run. The generation of the same with Machine Learning (ML) is almost instantaneous and can serve as an excellent simulation tool to guide future fabrication of optimal doping profiles in CdTe solar cells.
Date Created
2021
Agent