Improving Smart Home Security: Using Blockchain-Based Situation-Aware Access Control

190926-Thumbnail Image.png
Description
The evolution of technology, including the proliferation of the Internet of Things (IoT), advanced sensors, intelligent systems, and more, has paved the way for the establishment of smart homes. These homes bring a new era of automation with interconnected devices,

The evolution of technology, including the proliferation of the Internet of Things (IoT), advanced sensors, intelligent systems, and more, has paved the way for the establishment of smart homes. These homes bring a new era of automation with interconnected devices, offering increased services. However, they also introduce data security and device management challenges. Current smart home technologies are susceptible to security violations, leaving users vulnerable to data compromise, privacy invasions, and physical risks. These systems often fall short in implementing stringent data security safeguards, and the user control process is complex. In this thesis, an approach is presented to improve smart home security by integrating private blockchain technology with situational awareness access control. Using blockchain technology ensures transparency and immutability in data transactions. Transparency from the blockchain enables meticulous tracking of data access, modifications, and policy changes. The immutability of blockchain is utilized to strengthen the integrity of data, deterring, and preventing unauthorized alterations. While the designed solution leverages these specific blockchain features, it consciously does not employ blockchain's decentralization due to the limited computational resources of IoT devices and the focused requirement for centralized management within a smart home context. Additionally, situational awareness facilitates the dynamic adaptation of access policies. The strategies in this thesis excel beyond existing solutions, providing fine-grained access control, reliable transaction data storage, data ownership, audibility, transparency, access policy, and immutability. This approach is thoroughly evaluated against existing smart home security improvement solutions.
Date Created
2023
Agent

A Blockchain-Based Approach for Tracing Security Requirements for Large Scale and Complex Software Development

171782-Thumbnail Image.png
Description
Security requirements are at the heart of developing secure, invulnerable software. Without embedding security principles in the software development life cycle, the likelihood of producing insecure software increases, putting the consumers of that software at great risk. For large-scale software

Security requirements are at the heart of developing secure, invulnerable software. Without embedding security principles in the software development life cycle, the likelihood of producing insecure software increases, putting the consumers of that software at great risk. For large-scale software development, this problem is complicated as there may be hundreds or thousands of security requirements that need to be met, and it only worsens if the software development project is developed by a distributed development team. In this thesis, an approach is provided for software security requirement traceability for large-scale and complex software development projects being developed by distributed development teams. The approach utilizes blockchain technology to improve the automation of security requirement satisfaction and create a more transparent and trustworthy development environment for distributed development teams. The approach also introduces immutability, auditability, and non-repudiation into the security requirement traceability process. The approach is evaluated against existing software security requirement solutions.
Date Created
2022
Agent

Generating Trusted Coordination of Collaborative Software Development Using Blockchain

158591-Thumbnail Image.png
Description
The coordination of developing various complex and large-scale projects using computers has been well established and is the so-called computer-supported cooperative work (CSCW). Collaborative software development consists of a group of teams working together to achieve a common goal for

The coordination of developing various complex and large-scale projects using computers has been well established and is the so-called computer-supported cooperative work (CSCW). Collaborative software development consists of a group of teams working together to achieve a common goal for developing a high-quality, complex, and large-scale software system efficiently, and it requires common processes and communication channels among these teams. The common processes for coordination among software development teams can be handled by similar principles in CSCW. The development of complex and large-scale software becomes complicated due to the involvement of many software development teams. The development of such a software system can be largely improved by effective collaboration among the participating software development teams at both software components and system levels. The efficiency of developing software components depends on trusted coordination among the participating teams for sharing, processing, and managing information on various participating teams, which are often operating in a distributed environment. Participating teams may belong to the same organization or different organizations. Existing approaches to coordination in collaborative software development are based on using a centralized repository to store, process, and retrieve information on participating software development teams during the development. These approaches use a centralized authority, have a single point of failure, and restricted rights to own data and software. In this thesis, the generation of trusted coordination in collaborative software development using blockchain is studied, and an approach to achieving trusted cooperation for collaborative software development using blockchain is presented. The smart contracts are created in the blockchain to encode software specifications and acceptance criteria for the software results generated by participating teams. The blockchain used in the approach is a private blockchain because a private blockchain has the characteristics of providing non-repudiation, privacy, and integrity, which are required in trusted coordination of collaborative software development. This approach is implemented using Hyperledger, an open-source private blockchain. An example to illustrate the approach is also given.
Date Created
2020
Agent

Identification of Compromised Nodes in Collaborative Intrusion Detection Systems for Large Scale Networks Due to Insider Attacks

158417-Thumbnail Image.png
Description
Large organizations have multiple networks that are subject to attacks, which can be detected by continuous monitoring and analyzing the network traffic by Intrusion Detection Systems. Collaborative Intrusion Detection Systems (CIDS) are used for efficient detection of distributed attacks by

Large organizations have multiple networks that are subject to attacks, which can be detected by continuous monitoring and analyzing the network traffic by Intrusion Detection Systems. Collaborative Intrusion Detection Systems (CIDS) are used for efficient detection of distributed attacks by having a global view of the traffic events in large networks. However, CIDS are vulnerable to internal attacks, and these internal attacks decrease the mutual trust among the nodes in CIDS required for sharing of critical and sensitive alert data in CIDS. Without the data sharing, the nodes of CIDS cannot collaborate efficiently to form a comprehensive view of events in the networks monitored to detect distributed attacks. The compromised nodes will further decrease the accuracy of CIDS by generating false positives and false negatives of the traffic event classifications. In this thesis, an approach based on a trust score system is presented to detect and suspend the compromised nodes in CIDS to improve the trust among the nodes for efficient collaboration. This trust score-based approach is implemented as a consensus model on a private blockchain because private blockchain has the features to address the accountability, integrity and privacy requirements of CIDS. In this approach, the trust scores of malicious nodes are decreased with every reported false negative or false positive of the traffic event classifications. When the trust scores of any node falls below a threshold, the node is identified as compromised and suspended. The approach is evaluated for the accuracy of identifying malicious nodes in CIDS.
Date Created
2020
Agent

Improving the Trustworthiness of Electronic Voting Systems Using Blockchain

158018-Thumbnail Image.png
Description
Many researchers have seen the value blockchain can add to the field of voting and many protocols have been proposed to allow voting to be conducted in a way that takes advantage of blockchains distributed and immutable structure. While blockchains

Many researchers have seen the value blockchain can add to the field of voting and many protocols have been proposed to allow voting to be conducted in a way that takes advantage of blockchains distributed and immutable structure. While blockchains immutable structure can take the place of paper records in preventing tampering it by itself is insufficient to construct a trustworthy voting system with eligibility, privacy, verifiability, and fairness requirements. Many of the protocols which strive to keep voters votes confidential, but also allow for verifiability and eligibility requirements rely on either a blind signature provided by a central authority to provide compliance with these requirements or ring signatures to prove membership in the set of voters. A blind signature issued by a central authority introduces a potential vulnerability as it allows a corrupt central authority to pass a large number of forged ballots into the mix without any detection. Ring signatures on the other hand tend to be overly resource intensive to allow for practical usage in large voting sets. The research in this thesis focuses on improving the trustworthiness of electronic voting systems by providing possible ways of avoiding or detecting corrupt central authorities while still relying upon the benefits of efficiency the blind signature provides.
Date Created
2020
Agent

Forensic Methods and Tools for Web Environments

156001-Thumbnail Image.png
Description
The Web is one of the most exciting and dynamic areas of development in today’s technology. However, with such activity, innovation, and ubiquity have come a set of new challenges for digital forensic examiners, making their jobs even more difficult.

The Web is one of the most exciting and dynamic areas of development in today’s technology. However, with such activity, innovation, and ubiquity have come a set of new challenges for digital forensic examiners, making their jobs even more difficult. For examiners to become as effective with evidence from the Web as they currently are with more traditional evidence, they need (1) methods that guide them to know how to approach this new type of evidence and (2) tools that accommodate web environments’ unique characteristics.

In this dissertation, I present my research to alleviate the difficulties forensic examiners currently face with respect to evidence originating from web environments. First, I introduce a framework for web environment forensics, which elaborates on and addresses the key challenges examiners face and outlines a method for how to approach web-based evidence. Next, I describe my work to identify extensions installed on encrypted web thin clients using only a sound understanding of these systems’ inner workings and the metadata of the encrypted files. Finally, I discuss my approach to reconstructing the timeline of events on encrypted web thin clients by using service provider APIs as a proxy for directly analyzing the device. In each of these research areas, I also introduce structured formats that I customized to accommodate the unique features of the evidence sources while also facilitating tool interoperability and information sharing.
Date Created
2017
Agent

Attack detection for cyber systems and probabilistic state estimation in partially observable cyber environments

154798-Thumbnail Image.png
Description
Detecting cyber-attacks in cyber systems is essential for protecting cyber infrastructures from cyber-attacks. It is very difficult to detect cyber-attacks in cyber systems due to their high complexity. The accuracy of

Detecting cyber-attacks in cyber systems is essential for protecting cyber infrastructures from cyber-attacks. It is very difficult to detect cyber-attacks in cyber systems due to their high complexity. The accuracy of the attack detection in the cyber systems depends heavily on the completeness of the collected sensor information. In this thesis, two approaches are presented: one to detecting attacks in completely observable cyber systems, and the other to estimating types of states in partially observable cyber systems for attack detection in cyber systems. These two approaches are illustrated using three large data sets of network traffic because the packet-level information of the network traffic data provides details about the cyber systems.

The approach to attack detection in cyber systems is based on a multimodal artificial neural network (MANN) using the collected network traffic data from completely observable cyber systems for training and testing. Since the training of MANN is computationally intensive, to reduce the computational overhead, an efficient feature selection algorithm using the genetic algorithm is developed and incorporated in this approach.

In order to detect attacks in cyber systems in partially observable environments, an approach to estimating the types of states in partially observable cyber systems, which is the first phase of attack detection in cyber systems in partially observable environments, is presented. The types of states of such cyber systems are useful to detecting cyber-attacks in such cyber systems. This approach involves the use of a convolutional neural network (CNN), and unsupervised learning with elbow method and k-means clustering algorithm.
Date Created
2016
Agent

Techniques for supporting prediction of security breaches in critical cloud infrastructures using Bayesian network and Markov decision process

153969-Thumbnail Image.png
Description
Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the subsystems are directly interacting with humans. In our conceptual approach, the system-wide causal relationship can be captured by the Bayesian network, and the probabilistic human behavior in the subsystems can be captured by the Markov Decision Processes. The interactions between the dynamically changing state graphs of Markov Decision Processes and the dynamic causal relationships in Bayesian network are key components in such probabilistic modelling applications. In this thesis, two techniques are presented for supporting the above vision to prediction of potential security breaches in critical cloud infrastructures. The first technique is for evaluation of the conformance of the Bayesian network with the multiple MDPs. The second technique is to evaluate the dynamically changing Bayesian network structure for conformance with the rules of the Bayesian network using a graph checker algorithm. A case study and its simulation are presented to show how the two techniques support the specific parts in our conceptual approach to predicting system-wide security breaches in critical cloud infrastructures.
Date Created
2015
Agent

Discovering and using patterns for countering security challenges

153032-Thumbnail Image.png
Description
Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.
Date Created
2014
Agent

Automated event-driven security assessment

152422-Thumbnail Image.png
Description
With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems

With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may lead adversaries to access critical information by circumventing security practices. In order to ensure security, considerable efforts have been spent to develop security regulations by facilitating security best-practices. Applying shared security standards to the system is critical to understand vulnerabilities and prevent well-known threats from exploiting vulnerabilities. However, many end users tend to change configurations of their systems without paying attention to the security. Hence, it is not straightforward to protect systems from being changed by unconscious users in a timely manner. Detecting the installation of harmful applications is not sufficient since attackers may exploit risky software as well as commonly used software. In addition, checking the assurance of security configurations periodically is disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks that can leverage the window between each security checks. Therefore, event-driven monitoring approach is critical to continuously assess security of a target system without ignoring a particular window between security checks and lessen the burden of exhausted task to inspect the entire configurations in the system. Furthermore, the system should be able to generate a vulnerability report for any change initiated by a user if such changes refer to the requirements in the standards and turn out to be vulnerable. Assessing various systems in distributed environments also requires to consistently applying standards to each environment. Such a uniformed consistent assessment is important because the way of assessment approach for detecting security vulnerabilities may vary across applications and operating systems. In this thesis, I introduce an automated event-driven security assessment framework to overcome and accommodate the aforementioned issues. I also discuss the implementation details that are based on the commercial-off-the-self technologies and testbed being established to evaluate approach. Besides, I describe evaluation results that demonstrate the effectiveness and practicality of the approaches.
Date Created
2014
Agent