Open Information Extraction (OIE) is a subset of Natural Language Processing (NLP) that constitutes the processing of natural language into structured and machine-readable data. This thesis uses data in Resource Description Framework (RDF) triple format that comprises of a subject,…
Open Information Extraction (OIE) is a subset of Natural Language Processing (NLP) that constitutes the processing of natural language into structured and machine-readable data. This thesis uses data in Resource Description Framework (RDF) triple format that comprises of a subject, predicate, and object. The extraction of RDF triples from natural language is an essential step towards importing data into web ontologies as part of the linked open data cloud on the Semantic web. There have been a number of related techniques for extraction of triples from plain natural language text including but not limited to ClausIE, OLLIE, Reverb, and DeepEx. This proposed study aims to reduce the dependency on conventional machine learning models since they require training datasets, and the models are not easily customizable or explainable. By leveraging a context-free grammar (CFG) based model, this thesis aims to address some of these issues while minimizing the trade-offs on performance and accuracy. Furthermore, a deep-dive is conducted to analyze the strengths and limitations of the proposed approach.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
There exists extensive research on the use of twisty puzzles, such as the Rubik's Cube, in educational contexts to assist in developing critical thinking skills and in teaching abstract concepts, such as group theory. However, the existing research does not…
There exists extensive research on the use of twisty puzzles, such as the Rubik's Cube, in educational contexts to assist in developing critical thinking skills and in teaching abstract concepts, such as group theory. However, the existing research does not consider the use of twisty puzzles in developing language proficiency. Furthermore, there remain methodological issues in integrating standard twisty puzzles into a class curriculum due to the ease with which erroneous cube twists occur, leading to a puzzle scramble that deviates from the intended teaching goal. To address these issues, an extensive examination of the "smart cube" market took place in order to determine whether a device that virtualizes twisty puzzles while maintaining the intuitive tactility of manipulating such puzzles can be employed both to fill the language education void and to mitigate the potential frustration experienced by students who unintentionally scramble a puzzle due to executing the wrong moves. This examination revealed the presence of Bluetooth smart cubes, which are capable of interfacing with a companion web or mobile application that visualizes and reacts to puzzle manipulations. This examination also revealed the presence of a device called the WOWCube, which is a 2x2x2 smart cube entertainment system that has 24 Liquid Crystal Display (LCD) screens, one for each face's square, enabling better integration of the application with the puzzle hardware. Developing applications both for the Bluetooth smart cube using React Native and for the WOWCube demonstrated the higher feasibility of developing with the WOWCube due to its streamlined development kit as well as its ability to tie the application to the device hardware, enhancing the tactile immersion of the players with the application itself. Using the WOWCube, a word puzzle game featuring three game modes was implemented to assist in teaching players English vocabulary. Due to its incorporation of features that enable dynamic puzzle generation and resetting, players who participated in a user survey found that the game was compelling and that it exercised their critical thinking skills. This demonstrates the feasibility of smart cube applications in both critical thinking and language skills.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Frontend development often involves the repetitive and time-consuming task of transforming a Graphical User interface (GUI) design into Frontend Code. The GUI design could either be an image or a design created on tools like Figma, Sketch, etc. This process…
Frontend development often involves the repetitive and time-consuming task of transforming a Graphical User interface (GUI) design into Frontend Code. The GUI design could either be an image or a design created on tools like Figma, Sketch, etc. This process can be particularly challenging when the website designs are experimental and undergo multiple iterations before the final version gets deployed. In such cases, developers work with the designers to make continuous changes and improve the look and feel of the website. This can lead to a lot of reworks and a poorly managed codebase that requires significant developer resources. To tackle this problem, researchers are exploring ways to automate the process of transforming image designs into functional websites instantly. This thesis explores the use of machine learning, specifically Recurrent Neural networks (RNN) to generate an intermediate code from an image design and then compile it into a React web frontend code. By utilizing this approach, designers can essentially transform an image design into a functional website, granting them creative freedom and the ability to present working prototypes to stockholders in real-time. To overcome the limitations of existing publicly available datasets, the thesis places significant emphasis on generating synthetic datasets. As part of this effort, the research proposes a novel method to double the size of the pix2code [2] dataset by incorporating additional complex HTML elements such as login forms, carousels, and cards. This approach has the potential to enhance the quality and diversity of training data available for machine learning models. Overall, the proposed approach offers a promising solution to the repetitive and time-consuming task of transforming GUI designs into frontend code.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This thesis proposes a new steering system for agricultural machinery with the aim of improving the automation capabilities of farming robots. Accurate and reliable autonomous machinery has the potential to provide significant benefits to the efficiency of farming operations, but…
This thesis proposes a new steering system for agricultural machinery with the aim of improving the automation capabilities of farming robots. Accurate and reliable autonomous machinery has the potential to provide significant benefits to the efficiency of farming operations, but the existing systems for performing one of the most essential automation functions, autonomous steering to keep machinery on the proper course, each have drawbacks that impact their usability in various scenarios. In order to address these issues, a new lidar-based system was developed for automatic steering in a typical farm field. This approach uses a two-dimensional lidar unit to scan the ground in front of the robot to detect and steer based on farm tracks, a common feature in many farm fields. This system was implemented and evaluated, with results demonstrating that the system is capable of providing accurate steering corrections.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Ontologies play an important role in storing and exchanging digitized data. As the need for semantic web information grows, organizations from around the globe has defined ontologies in different domains to better represent the data. But different organizations define ontologies…
Ontologies play an important role in storing and exchanging digitized data. As the need for semantic web information grows, organizations from around the globe has defined ontologies in different domains to better represent the data. But different organizations define ontologies of the same entity in their own way. Finding ontologies of the same entity in different fields and domains has become very important for unifying and improving interoperability of data between these multiple domains. Many different techniques have been used over the year, including human assisted, automated and hybrid. In recent years with the availability of many machine learning techniques, researchers are trying to apply these techniques to solve the ontology alignment problem across different domains. In this study I have looked into the use of different machine learning techniques such as Support Vector Machine, Stochastic Gradient Descent, Random Forest etc. for solving ontology alignment problem with some of the most commonly used datasets found from the famous Ontology Alignment Evaluation Initiative (OAEI). I have proposed a method OntoAlign which demonstrates the importance of using different types of similarity measures for feature extraction from ontology data in order to achieve better results for ontology alignment.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A significant proportion of medical errors exist in crucial medical information, and most stem from misinterpreting non-standardized clinical notes. Clinical Skills exam offered by the United States Medical Licensing Examination (USMLE) was put in place to certify patient note-taking skills…
A significant proportion of medical errors exist in crucial medical information, and most stem from misinterpreting non-standardized clinical notes. Clinical Skills exam offered by the United States Medical Licensing Examination (USMLE) was put in place to certify patient note-taking skills before medical students joined professional practices, offering the first line of defense in protecting patients from medical errors. Nonetheless, the exams were discontinued in 2021 following high costs and resource usage in scoring the exams. This thesis compares four transformer-based models, namely BERT (Bidirectional Encoder Representations from Transformers) Base Uncased, Emilyalsentzer Bio_ClinicalBERT, RoBERTa (Robustly Optimized BERT Pre-Training Approach), and DeBERTa (Decoding-enhanced BERT with disentangled attention), with the goal to map free text in patient notes to clinical concepts present in the exam rubric. The impact of context-specific embeddings on BERT was also studied to determine the need for a clinical BERT in Clinical Skills exam. This thesis proposes the use of DeBERTa as a backbone model in patient note scoring for the USMLE Clinical Skills exam after comparing it with three other transformer models. Disentangled attention and enhanced mask decoder integrated into DeBERTa were credited for the high performance of DeBERTa as compared to the other models. Besides, the effect of meta pseudo labeling was also investigated in this thesis, which in turn, further enhanced DeBERTa’s performance.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The adoption of Open Source Software (OSS) by organizations has become a strategic need in a wide variety of software applications and platforms. Open Source has changed the way organizations develop, acquire, use, and commercialize software. Further, OSS projects often…
The adoption of Open Source Software (OSS) by organizations has become a strategic need in a wide variety of software applications and platforms. Open Source has changed the way organizations develop, acquire, use, and commercialize software. Further, OSS projects often incorporate similar principles and practices as Agile and Lean software development projects. Contrary to traditional organizations, the environment in which these projects function has an impact on process-related elements like the flow of work and value definition. Process metrics are typically employed during Agile Software Engineering projects as a means of providing meaningful feedback. Investigating these metrics to see if OSS projects and communities can utilize them in a beneficial way thus becomes an interesting research topic. In that context, this exploratory research investigates whether well-established Agile and Lean software engineering metrics provide useful feedback about OSS projects. This knowledge will assist in educating the Open Source community about the applications of Agile Software Engineering and its variations in Open Source projects. Each of the Open Source projects included in this analysis has a substantial development team that maintains a mature, well-established codebase with process flow information. These OSS projects listed on GitHub are investigated by applying process flow metrics. The methodology used to collect these metrics and relevant findings are discussed in this thesis. This study also compares the results to distinctive Open Source project characteristics as part of the analysis. In this exploratory research best-fit versions of published Agile and Lean software process metrics are applied to OSS, and following these explorations, specific questions are further addressed using the data collected. This research's original contribution is to determine whether Agile and Lean process metrics are helpful in OSS, as well as the opportunities and obstacles that may arise when applying Agile and Lean principles to OSS.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
COMPASS portal features tools that help teachers, psychologists, behavioral Specialists gain insights on students’ performance through activities they have completed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Globalization is driving a rapid increase in motivation for learning new languages, with online and mobile language learning applications being an extremely popular method of doing so. Many language learning applications focus almost exclusively on aiding students in acquiring vocabulary,…
Globalization is driving a rapid increase in motivation for learning new languages, with online and mobile language learning applications being an extremely popular method of doing so. Many language learning applications focus almost exclusively on aiding students in acquiring vocabulary, one of the most important elements in achieving fluency in a language. A well-balanced language curriculum must include both explicit vocabulary instruction and implicit vocabulary learning through interaction with authentic language materials. However, most language learning applications focus only on explicit instruction, providing little support for implicit learning. Students require support with implicit vocabulary learning because they need enough context to guess and acquire new words. Traditional techniques aim to teach students enough vocabulary to comprehend the text, thus enabling them to acquire new words. Despite the wide variety of support for vocabulary learning offered by learning applications today, few offer guidance on how to select an optimal vocabulary study set.
This thesis proposes a novel method of student modeling which uses pre-trained masked language models to model a student's reading comprehension abilities and detect words which are required for comprehension of a text. It explores the efficacy of using pre-trained masked language models to model human reading comprehension and presents a vocabulary study set generation pipeline using this method. This pipeline creates vocabulary study sets for explicit language learning that enable comprehension while still leaving some words to be acquired implicitly. Promising results show that masked language modeling can be used to model human comprehension and that the pipeline produces reasonably sized vocabulary study sets.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Smart home assistants are becoming a norm due to their ease-of-use. They employ spoken language as an interface, facilitating easy interaction with their users. Even with their obvious advantages, natural-language based interfaces are not prevalent outside the domain of home…
Smart home assistants are becoming a norm due to their ease-of-use. They employ spoken language as an interface, facilitating easy interaction with their users. Even with their obvious advantages, natural-language based interfaces are not prevalent outside the domain of home assistants. It is hard to adopt them for computer-controlled systems due to the numerous complexities involved with their implementation in varying fields. The main challenge is the grounding of natural language base terms into the underlying system's primitives. The existing systems that do use natural language interfaces are specific to one problem domain only.
In this thesis, a domain-agnostic framework that creates natural language interfaces for computer-controlled systems has been developed by making the mapping between the language constructs and the system primitives customizable. The framework employs ontologies built using OWL (Web Ontology Language) for knowledge representation purposes and machine learning models for language processing tasks. It has been evaluated within a simulation environment consisting of objects and a robot. This environment has been deployed as a web application, providing anonymous user testing for evaluation, and generating training data for machine learning components. Performance evaluation has been done on metrics such as time taken for a task or the number of instructions given by the user to the robot to accomplish a task. Additionally, the framework has been used to create a natural language interface for a database system to demonstrate its domain independence.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)