Advanced Power Amplifier Architectures to Support 5G+ Cellular Infrastructure

171994-Thumbnail Image.png
Description
The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve

The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to average power ratios (PAPR). Design of cellular infrastructure hardware to support these complex signals therefore becomes challenging, as the transmitter’s radio frequency power amplifier (RF PA) needs to remain highly efficient at both peak and backed off power conditions. Additionally, these PAs should exhibit high linearity and support continually increasing bandwidths. Many advanced PA configurations exhibit high efficiency for processing legacy communications signals. Some of the most popular architectures are Envelope Elimination and Restoration (EER), Envelope Tracking (ET), Linear Amplification using Non-linear Component (LINC), Doherty Power Amplifiers (DPA), and Polar Transmitters. Among these techniques, the DPA is the most widely used architecture for base-station applications because of its simple configuration and ability to be linearized using simple digital pre-distortion (DPD) algorithms. To support the cellular infrastructure needs of 5G and beyond, RF PAs, specifically DPA architectures, must be further enhanced to support broader bandwidths as well as smaller form-factors with higher levels of integration. The following four novel works are presented in this dissertation to support RF PA requirements for future cellular infrastructure: 1. A mathematical analysis to analyze the effects of non-linear parasitic capacitance (Cds) on the operation of continuous class-F (CCF) mode power amplifiers and identify their optimum operating range for high power and efficiency. 2. A methodology to incorporate a class-J harmonic trapping network inside the PA package by considering the effect of non-linear Cds, thus reducing the DPA footprint while achieving high RF performance. 3. A novel method of synthesizing the DPA’s output combining network (OCN) to realize an integrated two-stage integrated LDMOS asymmetric DPA. 4. A novel extended back-off efficiency range DPA architecture that engineers the mutual interaction between combining load and peaking off-state impedance. The theory and architecture are verified through a GaN-based DPA design.
Date Created
2022
Agent

Non-Isolated High Gain DC-DC Converters for Electric Vehicle and Renewable Energy Applications

171715-Thumbnail Image.png
Description
DC-DC converters are widely employed to interface one voltage level with another through step-up or step-down operation. In recent years, step-up DC-DC converters have been a key component in harnessing energy through renewable sources by providing an interface to integrate

DC-DC converters are widely employed to interface one voltage level with another through step-up or step-down operation. In recent years, step-up DC-DC converters have been a key component in harnessing energy through renewable sources by providing an interface to integrate low voltage systems to DC-AC converters or microgrids. They find increasing applications in battery and fuel cell electric vehicles which can benefit from high and variable DC link voltage. It is important to optimize these converters for higher efficiency while achieving high gain and high power density. Non-isolated DC-DC converters are an attractive option due to the reduced complexity of magnetic design, smaller size, and lower cost. However, in these topologies, achieving a very high gain along with high efficiency has been a challenge. This work encompasses different non-isolated high gain DC-DC converters for electric vehicle and renewable energy applications. The converter topologies proposed in this work can easily achieve a conversion ratio above 20 with lower voltage and current stress across devices. For applications requiring wide input or output voltage range, different control schemes, as well as modified converter configurations, are proposed. Moreover, the converter performance is optimized by employing wide band-gap devices-based hardware prototypes. It enables higher switching frequency operation with lower switching losses. In recent times, multiple soft-switching techniques have been introduced which enable higher switching frequency operation by minimizing the switching loss. This work also discusses different soft-switching mechanisms for the high conversion ratio converter and the proposed mechanism improves the converter efficiency significantly while reducing the inductor size. Further, a novel electric vehicle traction architecture with low voltage battery and multi-input high gain DC-DC converter is introduced in this work. The proposed architecture with multiple 48 V battery packs and integrated, multi-input, high conversion ratio DC-DC converters, can reduce the maximum voltage in the vehicle during emergencies to 48 V, mitigate cell balancing issues in battery, and provide a wide variable DC link voltage. The implementation of high conversion ratio converter in multiple configurations for the proposed architecture has been discussed in detail and the proposed converter operation is validated experimentally through a scaled hardware prototype.
Date Created
2022
Agent

Modeling the Effects of Total Ionizing Dose for Bipolar Commercial Off the Shelf Circuits

171391-Thumbnail Image.png
Description
Bipolar commercial-off-the-shelf (COTS) circuits are increasingly used in spacemissions due to the low cost per part. In space environments these devices are exposed to ionizing radiation that degrades their performance. Testing to evaluate the performance of these devices is a costly and

Bipolar commercial-off-the-shelf (COTS) circuits are increasingly used in spacemissions due to the low cost per part. In space environments these devices are exposed to ionizing radiation that degrades their performance. Testing to evaluate the performance of these devices is a costly and lengthy process. As such methods that can help predict a COTS part’s performance help alleviate these downsides. A modeling software for predicting total ionizing dose (TID), enhanced low dose rate sensitivity (ELDRS), and hydrogen gas on bipolar parts is introduced and expanded upon. The model is then developed in several key ways that expand it’s features and usability in this field. A physics based methodology of simulating interface traps (NIT) to expand the previously experimental only database is detailed. This new methodology is also compared to experimental data and used to establish a link between hydrogen concentration in the oxide and packaged hydrogen gas. Links are established between Technology Computer Aided Design (TCAD), circuit simulation, and experimental data. These links are then used to establish a better foundation for the model. New methodologies are added to the modeling software so that it is possible to simulate transient based characteristics like slew rate.
Date Created
2022
Agent

Load-Sharing Low-Dropout Linear Regulators and Time-Domain Switching Regulators

168397-Thumbnail Image.png
Description
The development of portable electronic systems has been a fundamental factor to the emergence of new applications including ubiquitous smart devices, self-driving vehicles. Power-Management Integrated Circuits (PMICs) which are a key component of such systems must maintain high efficiency and

The development of portable electronic systems has been a fundamental factor to the emergence of new applications including ubiquitous smart devices, self-driving vehicles. Power-Management Integrated Circuits (PMICs) which are a key component of such systems must maintain high efficiency and reliability for the final system to be appealing from a size and cost perspective. As technology advances, such portable systems require high output currents at low voltages from their PMICs leading to thermal reliability concerns. The reliability and power integrity of PMICs in such systems also degrades when operated in harsh environments. This dissertation presents solutions to solve two such reliability problems.The first part of this work presents a scalable, daisy-chain solution to parallelize multiple low-dropout linear (LDO) regulators to increase the total output current at low voltages. This printed circuit board (PCB) friendly approach achieves output current sharing without the need for any off-chip active or passive components or matched PCB traces thus reducing the overall system cost. Fully integrated current sensing based on dynamic element matching eliminates the need for any off-chip current sensing components. A current sharing accuracy of 2.613% and 2.789% for output voltages of 3V and 1V respectively and an output current of 2A per LDO are measured for the parallel LDO system implemented in a 0.18μm process. Thermal images demonstrate that the parallel LDO system achieves thermal equilibrium and stable reliable operation. The remainder of the thesis deals with time-domain switching regulators for high-reliability applications. A time-domain based buck and boost controller with time as the processing variable is developed for use in harsh environments. The controller features adaptive on-time / off-time generation for quasi-constant switching frequency and a time-domain comparator to implement current-mode hysteretic control. A triple redundant bandgap reference is also developed to mitigate the effects of radiation. Measurement results are showcased for a buck and boost converter with a common controller IC implemented in a 0.18μm process and an external power stage. The converter achieves a peak efficiency of 92.22% as a buck for an output current of 5A and an output voltage of 5V. Similarly, the converter achieves an efficiency of 95.97% as a boost for an output current of 1.25A and an output voltage of 30.4V.
Date Created
2021
Agent

Techniques on Galvanically Isolated RF Chip-to-Chip Communication Circuits and Pulse-Width Modulated Class-E Power Amplifiers

161744-Thumbnail Image.png
Description
This thesis presents three novel studies. The first two works focus on galvanically isolated chip-to-chip communication, and the third research studies class-E pulse-width modulated power amplifiers. First, a common-mode resilient CMOS (complementary metal-oxide-semiconductor) galvanically isolated Radio Frequency (RF) chip-to-chip communication

This thesis presents three novel studies. The first two works focus on galvanically isolated chip-to-chip communication, and the third research studies class-E pulse-width modulated power amplifiers. First, a common-mode resilient CMOS (complementary metal-oxide-semiconductor) galvanically isolated Radio Frequency (RF) chip-to-chip communication system is presented utilizing laterally resonant coupled circuits to increases maximum common-mode transient immunity and the isolation capability of galvanic isolators in a low-cost standard CMOS solution beyond the limits provided from the vertical coupling. The design provides the highest reported CMTI (common-mode transient immunity) of more than 600 kV/µs, 5 kVpk isolation, and a chip area of 0.95 mm2. In the second work, a bi-directional ultra-wideband transformer-coupled galvanic isolator is reported for the first time. The proposed design merges the functionality of two isolated channels into one magnetically coupled communication, enabling up to 50% form-factor and assembly cost reduction while achieving a simultaneously robust and state-of-art performance. This work achieves simultaneous robust, wideband, and energy-efficient performance of 300 Mb/s data rate, isolation of 7.8 kVrms, and power consumption and propagation delay of 200 pJ/b and 5 ns, respectively, in only 0.8 mm2 area. The third works studies class-E pulse-width modulated (PWM) Power amplifiers (PAs). For the first time, it presents a design technique to significantly extend the Power back-off (PBO) dynamic range of PWM PAs over the prior art. A proof-of-concept watt-level class-E PA is designed using a GaN HEMT and exhibits more than 6dB dynamic range for a 50 to 30 percent duty cycle variation. Moreover, in this work, the effects of non-idealities on performance and design of class-E power amplifiers for variable supply on and pulse-width operations are characterized and studied, including the effect of non-linear parasitic capacitances and its exploitation for enhancement of average efficiency and self-heating effects in class-E SMPAs using a new over dry-ice measurement technique was presented for this first time. The non-ideality study allows for capturing a full view of the design requirement and considerations of class-E power amplifiers and provides a window to the phenomena that lead to a mismatch between the ideal and actual performance of class-E power amplifiers and their root causes.
Date Created
2021
Agent

Study of On-Chip Integrated Switched-Capacitor Voltage Regulator

158871-Thumbnail Image.png
Description
Power management circuits have been more and more widely used in various applications, while providing fully integrated voltage regulation remains a challenging topic. Switched-capacitor (SC) voltage converters have received attentions in integrated power conversion for fixed-ratio voltage conversions with good

Power management circuits have been more and more widely used in various applications, while providing fully integrated voltage regulation remains a challenging topic. Switched-capacitor (SC) voltage converters have received attentions in integrated power conversion for fixed-ratio voltage conversions with good efficiency and feasibility of integration. During my PhD study, an on-chip current sensing technique is proposed to dynamically modulate both switching frequency and switch widths of SC voltage converters, enhancing fast transient response and higher efficiency across a wide range of load currents. In conjunction with SC converters, a low-dropout regulator (LDO) is implemented which is driven by a push-pull operational transconductance amplifier (OTA), whose current is mirrored and sensed with minimal power and efficiency overhead. The sensed load current directly controls the frequency and width of SC converters through a voltage-controlled oscillator (VCO) and a time-to-digital converter, respectively.
Theoretical analysis and optimization for SC DC-DC converters have been presented in prior works, however optimization of different capacitors, namely flying and input/output decoupling capacitors, in SC voltage regulators (SCVRs) under an area constraint has not been addressed. A methodology to optimize flying and decoupling capacitance for area-constrained on-chip SCVRs to achieve the highest system-level power efficiency. Considering both conversion efficiency and droop voltage against fast load transients, the proposed model determines the optimal ratio between flying and decoupling.
Based on the previous design, a fully integrated switched-capacitor voltage regulator with voltage comparison and on-chip lossless current sensing control is proposed. Based on the voltage comparison result and sensed current as the load current changes, the frequency of the SC converters are modulated for optimal efficiency. The voltage regulator targets 2.1V input voltage and 0.9V output voltage, which offers higher-voltage power transfer across chip package. A 17-phase interleaved structure is used to reduce output voltage ripple.
In 65nm CMOS, the regulator is implemented with MIM-capacitor, targeting 2.1V input voltage and 0.9V output voltage. According to the measurement results, the proposed SC voltage regulator achieves 69.6% peak efficiency at 60mA load current, which corresponds to a 4.2mW/mm2 power-area density and 12.5mW
F power-capacitance density. The efficiency across 20mA to 92mA regulator load current range is above 62%. The steady-state output voltage ripple across 22x load current range of 3.5mA-76mA is between 50mV to 60mV.
Date Created
2020
Agent

Wireless Wearable Sensor to Characterize Respiratory Behaviors

158748-Thumbnail Image.png
Description
Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively

Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively less value in clinical application. In this dissertation, a wireless wearable sensor on a paper substrate is developed to continuously characterize respiratory behavior and deliver clinically relevant parameters, contributing to asthma control. Based on the anatomical analysis and experimental results, the optimum site for the wireless wearable sensor is on the midway of the xiphoid process and the costal margin, corresponding to the abdomen-apposed rib cage. At the wearing site, the linear strain change during respiration is measured and converted to lung volume by the wireless wearable sensor utilizing a distance-elapsed ultrasound. An on-board low-power Bluetooth module transmits the temporal lung volume change to a smartphone, where a custom-programmed app computes to show the clinically relevant parameters, such as forced vital capacity (FVC) and forced expiratory volume delivered in the first second (FEV1) and the FEV1/FVC ratio. Enhanced by a simple, yet effective machine-learning algorithm, a system consisting of two wireless wearable sensors accurately extracts respiratory features and classifies the respiratory behavior within four postures among different subjects, demonstrating that the respiratory behaviors are individual- and posture-dependent contributing to monitoring the posture-related respiratory diseases. The continuous and accurate monitoring of respiratory behaviors can track the respiratory disorders and diseases' progression for timely and objective approaches for control and management.
Date Created
2020
Agent

Analytical Modeling and Development of GaN-Based Point of Load Buck Converter with Optimized Reverse Conduction Loss

158651-Thumbnail Image.png
Description
This work analyzes and develops a point-of-load (PoL) synchronous buck converter using enhancement-mode Gallium Nitride (e-GaN), with emphasis on optimizing reverse conduction loss by using a well-known technique of placing an anti-parallel Schottky diode across the synchronous power device.

This work analyzes and develops a point-of-load (PoL) synchronous buck converter using enhancement-mode Gallium Nitride (e-GaN), with emphasis on optimizing reverse conduction loss by using a well-known technique of placing an anti-parallel Schottky diode across the synchronous power device. This work develops an improved analytical switching model for the GaN-based converter with the Schottky diode using piecewise linear approximations.

To avoid a shoot-through between the power switches of the buck converter, a small dead-time is inserted between gate drive switching transitions. Despite optimum dead-time management for a power converter, optimum dead-times vary for different load conditions. These variations become considerably large for PoL applications, which demand high output current with low output voltages. At high switching frequencies, these variations translate into losses that contribute significantly to the total loss of the converter. To understand and quantify power loss in a hard-switching buck converter that uses a GaN power device in parallel with a Schottky diode, piecewise transitions are used to develop an analytical switching model that quantifies the contribution of reverse conduction loss of GaN during dead-time.

The effects of parasitic elements on the dynamics of the switching converter are investigated during one switching cycle of the converter. A designed prototype of a buck converter is correlated to the predicted model to determine the accuracy of the model. This comparison is presented using simulations and measurements at 400 kHz and 2 MHz converter switching speeds for load (1A) condition and fixed dead-time values. Furthermore, performance of the buck converter with and without the Schottky diode is also measured and compared to demonstrate and quantify the enhanced performance when using an anti-parallel diode. The developed power converter achieves peak efficiencies of 91.7% and 93.86% for 2 MHz and 400 KHz switching frequencies, respectively, and drives load currents up to 6A for a voltage conversion from 12V input to 3.3V output.

In addition, various industry Schottky diodes have been categorized based on their packaging and electrical characteristics and the developed analytical model provides analytical expressions relating the diode characteristics to power stage performance parameters. The performance of these diodes has been characterized for different buck converter voltage step-down ratios that are typically used in industry applications and different switching frequencies ranging from 400 KHz to 2 MHz.
Date Created
2020
Agent

A Wide Bandwidth High Power Supply Rejection Ratio PMOS Linear Low-Dropout Regulator With Ultra Low Quiescent Current

158532-Thumbnail Image.png
Description
With the push for integration, a slew of modern switching power management circuits are operating at higher switching frequencies in order to reduce passive filter sizes. But while these switching regulators provide power conversion at high efficiencies, their output is

With the push for integration, a slew of modern switching power management circuits are operating at higher switching frequencies in order to reduce passive filter sizes. But while these switching regulators provide power conversion at high efficiencies, their output is prone to ripples due to the inherent switching behavior. These switching regulators use linear-low dropout regulators (LDOs) downstream to provide clean supplies. Typically, these LDOs have good power supply rejection (PSR) at lower frequencies but this degrades at higher frequencies. Therefore, some residual ripple is still manifested on the output. Because of this, high power supply rejection (PSR) with a wide rejection frequency band is becoming a critical requirement in linear low-dropout regulators (LDOs) used in complex systems- on-chip (SOCs).

Typical LDOs achieve higher PSR within their loop-bandwidth; however, their supply rejection performance degrades with reduced loop-gain outside their loop- bandwidth. The LDOs with external filtering capacitors may also have spectral peaking in their PSR response, causing excess system- level supply noise. This work presents an LDO design approach, which achieves a PSR of higher than 68 dB up to 2 MHz frequency and over a wide range of loads up to 250 mA. The wide PSR bandwidth is achieved using a current-mode feedforward ripple canceller (CFFRC) amplifier which provides up to 25 dB of PSR improvement. The feedforward path gain is inherently matched to the forward gain of the LDO, not requiring calibration. The LDO has a fast load transient response with a recovery time of 6.1μs and has a quiescent current of 5.6μA. For a full load transition, the LDO achieves settling with overshoot and undershoot voltages below 27.6 mV and 36.36 mV, respectively. The LDO is designed and fabricated in a 180 nm bipolar/CMOS/DMOS (BCD) technology. The CFFRC amplifier helps to achieve low quiescent power due to its inherent current mode nature, eliminating the need for supply ripple summing amplifiers and adaptive biasing.
Date Created
2020
Agent

Development of a Load-Managing Photovoltaic System Topology

158515-Thumbnail Image.png
Description
Nearly all solar photovoltaic (PV) systems are designed with maximum power point tracking (MPPT) functionality to maximize the utilization of available power from the PV array throughout the day. In conventional PV systems, the MPPT function is handled by a

Nearly all solar photovoltaic (PV) systems are designed with maximum power point tracking (MPPT) functionality to maximize the utilization of available power from the PV array throughout the day. In conventional PV systems, the MPPT function is handled by a power electronic device, like a DC-AC inverter. However, given that most PV systems are designed to be grid-connected, there are several challenges for designing PV systems for DC-powered applications and off-grid applications. The first challenge is that all power electronic devices introduce some degree of power loss. Beyond the cost of the lost power, the upfront cost of power electronics also increases with the required power rating. Second, there are very few commercially available options for DC-DC converters that include MPPT functionality, and nearly all PV inverters are designed as “grid-following” devices, as opposed to “grid-forming” devices, meaning they cannot be used in off-grid applications.

To address the challenges of designing PV systems for high-power DC and off-grid applications, a load-managing photovoltaic (LMPV) system topology has been proposed. Instead of using power electronics, the LMPV system performs maximum power point tracking through load management. By implementing a load-management approach, the upfront costs and the power losses associated with the power electronics are avoided, both of which improve the economic viability of the PV system. This work introduces the concept of an LMPV system, provides in-depth analyses through both simulation and experimental validation, and explores several potential applications of the system, such as solar-powered commercial-scale electrolyzers for the production of hydrogen fuel or the production and purification of raw materials like caustic soda, copper, and zinc.
Date Created
2020
Agent