Continual Learning with Novelty Detection: Algorithms and Applications to Image and Microelectronic Design

193492-Thumbnail Image.png
Description
Machine learning techniques have found extensive application in dynamic fields like drones, self-driving vehicles, surveillance, and more. Their effectiveness stems from meticulously crafted deep neural networks (DNNs), extensive data gathering efforts, and resource-intensive model training processes. However, due to the

Machine learning techniques have found extensive application in dynamic fields like drones, self-driving vehicles, surveillance, and more. Their effectiveness stems from meticulously crafted deep neural networks (DNNs), extensive data gathering efforts, and resource-intensive model training processes. However, due to the unpredictable nature of the environment, these systems will inevitably encounter input samples that deviate from the distribution of their original training data, resulting in instability and performance degradation.To effectively detect the emergence of out-of-distribution (OOD) data, this dissertation first proposes a novel, self-supervised approach that evaluates the Mahalanobis distance between the in-distribution (ID) and OOD in gradient space. A binary classifier is then introduced to guide the label selection for gradients calculation, which further boosts the detection performance. Next, to continuously adapt the new OOD into the existing knowledge base, an unified framework for novelty detection and continual learning is proposed. The binary classifier, trained to distinguish OOD data from ID, is connected sequentially with the pre-trained model to form a “N + 1” classifier, where “N” represents prior knowledge which contains N classes and “1” refers to the newly arrival OOD. This continual learning process continues as “N+1+1+1+...”, assimilating the knowledge of each new OOD instance into the system. Finally, this dissertation demonstrates the practical implementation of novelty detection and continual learning within the domain of thermal analysis. To rapidly address the impact of voids in thermal interface material (TIM), a continuous adaptation approach is proposed, which integrates trainable nodes into the graph at the locations where abnormal thermal behaviors are detected. With minimal training overhead, the model can quickly adapts to the change caused by the defects and regenerate accurate thermal prediction. In summary, this dissertation proposes several algorithms and practical applications in continual learning aimed at enhancing the stability and adaptability of the system. All proposed algorithms are validated through extensive experiments conducted on benchmark datasets such as CIFAR-10, CIFAR-100, TinyImageNet for continual learning, and real thermal data for thermal analysis.
Date Created
2024
Agent

In-Memory Computing Based Hardware Accelerators Advancing the Implementation of AI/ML Tasks in Edge Devices

190780-Thumbnail Image.png
Description
Artificial Intelligence (AI) and Machine Learning (ML) techniques have come a long way since their inception and have been used to build intelligent systems for a wide range of applications in everyday life. However they are very computationintensive and require

Artificial Intelligence (AI) and Machine Learning (ML) techniques have come a long way since their inception and have been used to build intelligent systems for a wide range of applications in everyday life. However they are very computationintensive and require transfer of large volume of data from memory to the computation units. This memory access time constitute significant part of the computational latency and a performance bottleneck. To address this limitation and the ever-growing demand for implementation in hand-held and edge-devices, In-memory computing (IMC) based AI/ML hardware accelerators have emerged. First, the dissertation presents an IMC static random access memory (SRAM) based hardware modeling and optimization framework. A unified systematic study closely models the IMC hardware, and investigates how a number of design variables and non-idealities (e.g. device mismatch and ADC quantization) affect the Deep Neural Network (DNN) accuracy of the IMC design. The framework allows co-optimized selection of different design variables accounting for sources of noise in IMC hardware and robust implementation of a high accuracy DNN. Next, it presents a kNN hardware accelerator in 65nm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The accelerator combines an IMC SRAM that is developed for binarized deep neural networks and other digital hardware that performs top-k sorting. The simulated k Nearest Neighbor accelerator design processes up to 17.9 million query vectors per second while consuming 11.8 mW, demonstrating >4.8× energy-efficiency improvement over prior works. This dissertation also presents a novel floating-point precision IMC (FP-IMC) macro with a hybrid architecture that configurably supports two Floating Point (FP) precisions. Implementing FP precision MAC has been a challenge owing to its complexity. The design is implemented on 28nm CMOS, and taped-out on chip demonstrating 12.1 TFLOPS/W and 66.1 TFLOPS/W for 8-bit Floating Point (FP8) and Block Floating point (BF8) respectively. Finally, another iteration of the FP design is presented that is modeled to support multiple precision modes from FP8 up to FP32. Two approaches to the architectural design were compared illustrating the throughput-area overhead trade-off. The simulated design shows a 2.1 × normalized energy-efficiency compared to the on-chip implementation of the FP-IMC.
Date Created
2023
Agent

Enabling Deep Learning at Edge: From Efficient and Dynamic Inference to On-Device Learning

189353-Thumbnail Image.png
Description
In recent years, Artificial Intelligence (AI) (e.g., Deep Neural Networks (DNNs), Transformer) has shown great success in real-world applications due to its superior performance in various cognitive tasks. The impressive performance achieved by AI models normally accompanies the cost of

In recent years, Artificial Intelligence (AI) (e.g., Deep Neural Networks (DNNs), Transformer) has shown great success in real-world applications due to its superior performance in various cognitive tasks. The impressive performance achieved by AI models normally accompanies the cost of enormous model size and high computational complexity, which significantly hampers their implementation on resource-limited Cyber-Physical Systems (CPS), Internet-of-Things (IoT), or Edge systems due to their tightly constrained energy, computing, size, and memory budget. Thus, the urgent demand for enhancing the \textbf{Efficiency} of DNN has drawn significant research interests across various communities. Motivated by the aforementioned concerns, this doctoral research has been mainly focusing on Enabling Deep Learning at Edge: From Efficient and Dynamic Inference to On-Device Learning. Specifically, from the inference perspective, this dissertation begins by investigating a hardware-friendly model compression method that effectively reduces the size of AI model while simultaneously achieving improved speed on edge devices. Additionally, due to the fact that diverse resource constraints of different edge devices, this dissertation further explores dynamic inference, which allows for real-time tuning of inference model size, computation, and latency to accommodate the limitations of each edge device. Regarding efficient on-device learning, this dissertation starts by analyzing memory usage during transfer learning training. Based on this analysis, a novel framework called "Reprogramming Network'' (Rep-Net) is introduced that offers a fresh perspective on the on-device transfer learning problem. The Rep-Net enables on-device transferlearning by directly learning to reprogram the intermediate features of a pre-trained model. Lastly, this dissertation studies an efficient continual learning algorithm that facilitates learning multiple tasks without the risk of forgetting previously acquired knowledge. In practice, through the exploration of task correlation, an interesting phenomenon is observed that the intermediate features are highly correlated between tasks with the self-supervised pre-trained model. Building upon this observation, a novel approach called progressive task-correlated layer freezing is proposed to gradually freeze a subset of layers with the highest correlation ratios for each task leading to training efficiency.
Date Created
2023
Agent

Analog-based Neural Network Implementation Using Hexagonal Boron Nitride Memristors

187773-Thumbnail Image.png
Description
Resistive random-access memory (RRAM) or memristor, is an emerging technology used in neuromorphic computing to exceed the traditional von Neumann obstacle by merging the processing and memory units. Two-dimensional (2D) materials with non-volatile switching behavior can be used as the

Resistive random-access memory (RRAM) or memristor, is an emerging technology used in neuromorphic computing to exceed the traditional von Neumann obstacle by merging the processing and memory units. Two-dimensional (2D) materials with non-volatile switching behavior can be used as the switching layer of RRAMs, exhibiting superior behavior compared to conventional oxide-based RRAMs. The use of 2D materials allows scaling the resistive switching layer thickness to sub-nanometer dimensions enabling devices to operate with low switching voltages and high programming speeds, offering large improvements in efficiency and performance as well as ultra-dense integration. This dissertation presents an extensive study of linear and logistic regression algorithms implemented with 1-transistor-1-resistor (1T1R) memristor crossbars arrays. For this task, a simulation platform is used that wraps circuit-level simulations of 1T1R crossbars and physics-based model of RRAM to elucidate the impact of device variability on algorithm accuracy, convergence rate, and precision. Moreover, a smart pulsing strategy is proposed for the practical implementation of synaptic weight updates that can accelerate training in real crossbar architectures. Next, this dissertation reports on the hardware implementation of analog dot-product operation on arrays of 2D hexagonal boron nitride (h-BN) memristors. This extends beyond previous work that studied isolated device characteristics towards the application of analog neural network accelerators based on 2D memristor arrays. The wafer-level fabrication of the memristor arrays is enabled by large-area transfer of CVD-grown few-layer h-BN films. The dot-product operation shows excellent linearity and repeatability, with low read energy consumption, with minimal error and deviation over various measurement cycles. Moreover, the successful implementation of a stochastic linear and logistic regression algorithm in 2D h-BN memristor hardware is presented for the classification of noisy images. Additionally, the electrical performance of novel 2D h-BN memristor for SNN applications is extensively investigated. Then, using the experimental behavior of the h-BN memristor as the artificial synapse, an unsupervised spiking neural network (SNN) is simulated for the image classification task. A novel and simple Spike-Timing-Dependent-Plasticity (STDP)-based dropout technique is presented to enhance the recognition task of the h-BN memristor-based SNN.
Date Created
2023
Agent

An Active EMI Cancellation Technique Achieving a 25-dB Reduction in Conducted EMI of LIN Drivers in System Basis Chips

187583-Thumbnail Image.png
Description
Modern-day automobiles are becoming more connected and reliant on wireless connectivity. Thus, automotive electronics can be both a cause of and highly sensitive to electromagnetic interference (EMI), and the consequences of failure can be fatal. Technology advancements in engineering have

Modern-day automobiles are becoming more connected and reliant on wireless connectivity. Thus, automotive electronics can be both a cause of and highly sensitive to electromagnetic interference (EMI), and the consequences of failure can be fatal. Technology advancements in engineering have brought several features into the automotive field but at the expense of electromagnetic compatibility issues. Automotive EMC problems are the result of the emissions from electronic assemblies inside a vehicle and the susceptibility of the electronics when exposed to external EMI sources. In both cases, automotive EMC problems can cause unintended changes in the automotive system operation. Robustness to electromagnetic interference (EMI) is one of the primary design aspects of state-of-the-art automotive ICs like System Basis Chips (SBCs) which provide a wide range of analog, power regulation and digital functions on the same die. One of the primary sources of conducted EMI on the Local Interconnect Network (LIN) driver output is an integrated switching DC-DC regulator noise coupling through the parasitic substrate capacitance of the SBC. In this dissertation an adaptive active EMI cancellation technique to cancel the switching noise of the DC-DC regulator on the LIN driver output to ensure electromagnetic compatibility (EMC) is presented. The proposed active EMI cancellation circuit synthesizes a phase synchronized cancellation pulse which is then injected onto the LIN driver output using an on-chip tunable capacitor array to cancel the switching noise injected via the substrate. The proposed EMI reduction technique can track and cancel substrate noise independent of process technology and device parasitics, input voltage, duty cycle, and loading conditions of the DC-DC switching regulator. The EMI cancellation system is designed and fabricated on a 180nm Bipolar-CMOS-DMOS (BCD) process with an integrated power stage of a DC-DC buck regulator at a switching frequency of 2MHz along with an automotive LIN driver. The EMI cancellation circuit occupies an area of 0.7 mm2, which is less than 3% of the overall area in a standard SBC and consumes 12.5 mW of power and achieves 25 dB reduction of conducted EMI in the LIN driver output’s power spectrum at the switching frequency and its harmonics.
Date Created
2023
Agent

Neuron-based Digital and Mixed-signal Circuit Design: From ASIC to SIMD Processors

187470-Thumbnail Image.png
Description
Among the many challenges facing circuit designers in deep sub-micron technologies, power, performance, area (PPA) and process variations are perhaps the most critical. Since existing strategies for reducing power and boosting the performance of the circuit designs have already matured

Among the many challenges facing circuit designers in deep sub-micron technologies, power, performance, area (PPA) and process variations are perhaps the most critical. Since existing strategies for reducing power and boosting the performance of the circuit designs have already matured to saturation, it is necessary to explore alternate unconventional strategies. This investigation focuses on using perceptrons to enhance PPA in digital circuits and starts by constructing the perceptron using a combination of complementary metal-oxide-semiconductor (CMOS) and flash technology. The use of flash enables the perceptron to have a variable delay and functionality, making them robust to process, voltage, and temperature variations. By replacing parts of an application-specific integrated circuit (ASIC) with these perceptrons, improvements of up to 30% in the area and 20% in power can be achieved without affecting performance. Furthermore, the ability to vary the delay of a perceptron enables circuit designers to fix setup and hold-time violations post-fabrication, while reprogramming the functionality enables the obfuscation of the circuits. The study extends to field-programmable gate arrays (FPGAs), showing that traditional FPGA architectures can also achieve improved PPA by replacing some Look-Up-Tables (LUTs) with perceptrons. Considering that replacing parts of traditional digital circuits provides significant improvements in PPA, a natural extension was to see whether circuits built dedicatedly using perceptrons as its compute unit would lead to improvements in energy efficiency. This was demonstrated by developing perceptron-based compute elements and constructing an architecture using these elements for Quantized Neural Network acceleration. The resulting circuit delivered up to 50 times more energy efficiency compared to a CMOS-based accelerator without using standard low-power techniques such as voltage scaling and approximate computing.
Date Created
2023
Agent

Exploration of Security and Privacy Challenges through Adversarial Weight Perturbation in Deep Learning Models

171895-Thumbnail Image.png
Description
Adversarial threats of deep learning are increasingly becoming a concern due to the ubiquitous deployment of deep neural networks(DNNs) in many security-sensitive domains. Among the existing threats, adversarial weight perturbation is an emerging class of threats that attempts to perturb

Adversarial threats of deep learning are increasingly becoming a concern due to the ubiquitous deployment of deep neural networks(DNNs) in many security-sensitive domains. Among the existing threats, adversarial weight perturbation is an emerging class of threats that attempts to perturb the weight parameters of DNNs to breach security and privacy.In this thesis, the first weight perturbation attack introduced is called Bit-Flip Attack (BFA), which can maliciously flip a small number of bits within a computer’s main memory system storing the DNN weight parameter to achieve malicious objectives. Our developed algorithm can achieve three specific attack objectives: I) Un-targeted accuracy degradation attack, ii) Targeted attack, & iii) Trojan attack. Moreover, BFA utilizes the rowhammer technique to demonstrate the bit-flip attack in an actual computer prototype. While the bit-flip attack is conducted in a white-box setting, the subsequent contribution of this thesis is to develop another novel weight perturbation attack in a black-box setting. Consequently, this thesis discusses a new study of DNN model vulnerabilities in a multi-tenant Field Programmable Gate Array (FPGA) cloud under a strict black-box framework. This newly developed attack framework injects faults in the malicious tenant by duplicating specific DNN weight packages during data transmission between off-chip memory and on-chip buffer of a victim FPGA. The proposed attack is also experimentally validated in a multi-tenant cloud FPGA prototype. In the final part, the focus shifts toward deep learning model privacy, popularly known as model extraction, that can steal partial DNN weight parameters remotely with the aid of a memory side-channel attack. In addition, a novel training algorithm is designed to utilize the partially leaked DNN weight bit information, making the model extraction attack more effective. The algorithm effectively leverages the partial leaked bit information and generates a substitute prototype of the victim model with almost identical performance to the victim.
Date Created
2022
Agent

Energy Efficient ASIC/FPGA Neural Network Accelerators

171744-Thumbnail Image.png
Description
Convolutional neural networks(CNNs) achieve high accuracy on large datasets but requires significant computation and storage requirement for training/testing. While many applications demand low latency and energy-efficient processing of the images, deploying these complex algorithms on the hardware is a challenging

Convolutional neural networks(CNNs) achieve high accuracy on large datasets but requires significant computation and storage requirement for training/testing. While many applications demand low latency and energy-efficient processing of the images, deploying these complex algorithms on the hardware is a challenging task. This dissertation first presents a compiler-based CNN training accelerator using DDR3 and HBM2 memory. An optimized RTL library is implemented to perform training-specific tasks and an RTL compiler is developed to generate FPGA-synthesizable RTL based on user-defined constraints. High Bandwidth Memory(HBM) provides efficient off-chip communication and improves the training performance. The impact of HBM2 on CNN training workloads is analyzed and compressively compared with DDR3. For training ResNet-20/VGG-like CNNs for the CIFAR-10 dataset, the proposed CNN training accelerator on Stratix-10 GX FPGA(DDR3) demonstrates 479 GOPS performance, and on Stratix-10 MX FPGA(HBM) shows 4.5/9.7 X energy-efficiency improvement compared to Tesla V100 GPU. Next, the FPGA online learning accelerator is presented. Adopting model segmentation techniques from Progressive Segmented Training(PST), the online learning accelerator achieved a 4.2X reduction in training latency. Furthermore, this dissertation presents an 8-bit floating-point (FP8) training processor which implements (1) Highly parallel tensor cores that maintain high PE utilization, (2) Hardware-efficient channel gating for dynamic output activation sparsity (3) Dynamic weight sparsity based on group Lasso (4) Gradient skipping based on FP prediction error. The 28nm prototype chip demonstrates significant improvements in FLOPs reduction (7.3×), energy efficiency (16.4 TFLOPS/W), and overall training latency speedup (4.7×) for both supervised training and self-supervised training tasks. In addition to the training accelerators, this dissertation also presents a CNN inference accelerator on ASIC(FixyNN) and FPGA(FixyFPGA). FixyNN consists of a fixed-weight feature extractor that generates ubiquitous CNN features and a conventional programmable CNN accelerator. In the fixed-weight feature extractor, the network weights are hard-coded into hardware and used as a fixed operand for the multiplication. Experimental results demonstrate FixyNN can achieve very high energy efficiencies up to 26.6 TOPS/W, and FixyFPGA achieves $2.34\times$ higher GOPS on ImageNet classification. In summary, this dissertation comprehensively discusses novel architectures of high-performance and energy-efficient ASIC/FPGA CNN inference/training accelerators.
Date Created
2022
Agent

Computational Imaging for Energy-Efficient Cameras: Adaptive ROI-based Object Tracking and Optically Defocused Event-based Sensing.

171616-Thumbnail Image.png
Description
Computer vision is becoming an essential component of embedded system applications such as smartphones, wearables, autonomous systems and internet-of-things (IoT). These applications are generally deployed into environments with limited energy, memory bandwidth and computational resources. This trend is driving the

Computer vision is becoming an essential component of embedded system applications such as smartphones, wearables, autonomous systems and internet-of-things (IoT). These applications are generally deployed into environments with limited energy, memory bandwidth and computational resources. This trend is driving the development of energy-effi cient image processing solutions from sensing to computation. In this thesis, diff erent alternatives are explored to implement energy-efficient computer vision systems. First, I present a fi eld programmable gate array (FPGA) implementation of an adaptive subsampling algorithm for region-of-interest (ROI) -based object tracking. By implementing the computationally intensive sections of this algorithm on an FPGA, I aim to offl oad computing resources from energy-ineffi cient graphics processing units (GPUs) and/or general-purpose central processing units (CPUs). I also present a working system executing this algorithm in near real-time latency implemented on a standalone embedded device. Secondly, I present a neural network-based pipeline to improve the performance of event-based cameras in non-ideal optical conditions. Event-based cameras or dynamic vision sensors (DVS) are bio-inspired sensors that measure logarithmic per-pixel brightness changes in a scene. Their advantages include high dynamic range, low latency and ultra-low power when compared to standard frame-based cameras. Several tasks have been proposed to take advantage of these novel sensors but they rely on perfectly calibrated optical lenses that are in-focus. In this work I propose a methodto reconstruct events captured with an out-of-focus event-camera so they can be fed into an intensity reconstruction task. The network is trained with a dataset generated by simulating defocus blur in sequences from object tracking datasets such as LaSOT and OTB100. I also test the generalization performance of this network in scenes captured with a DAVIS event-based sensor equipped with an out-of-focus lens.
Date Created
2022
Agent

Quantum Scattering and Machine Learning in Dirac Materials

171408-Thumbnail Image.png
Description
A remarkable phenomenon in contemporary physics is quantum scarring in classically chaoticsystems, where the wave functions tend to concentrate on classical periodic orbits. Quantum scarring has been studied for more than four decades, but the problem of efficiently detecting quantum scars has

A remarkable phenomenon in contemporary physics is quantum scarring in classically chaoticsystems, where the wave functions tend to concentrate on classical periodic orbits. Quantum scarring has been studied for more than four decades, but the problem of efficiently detecting quantum scars has remained to be challenging, relying mostly on human visualization of wave function patterns. This paper develops a machine learning approach to detecting quantum scars in an automated and highly efficient manner. In particular, this paper exploits Meta learning. The first step is to construct a few-shot classification algorithm, under the requirement that the one-shot classification accuracy be larger than 90%. Then propose a scheme based on a combination of neural networks to improve the accuracy. This paper shows that the machine learning scheme can find the correct quantum scars from thousands images of wave functions, without any human intervention, regardless of the symmetry of the underlying classical system. This will be the first application of Meta learning to quantum systems. Interacting spin networks are fundamental to quantum computing. Data-based tomography oftime-independent spin networks has been achieved, but an open challenge is to ascertain the structures of time-dependent spin networks using time series measurements taken locally from a small subset of the spins. Physically, the dynamical evolution of a spin network under time-dependent driving or perturbation is described by the Heisenberg equation of motion. Motivated by this basic fact, this paper articulates a physics-enhanced machine learning framework whose core is Heisenberg neural networks. This paper demonstrates that, from local measurements, not only the local Hamiltonian can be recovered but the Hamiltonian reflecting the interacting structure of the whole system can also be faithfully reconstructed. Using Heisenberg neural machine on spin networks of a variety of structures. In the extreme case where measurements are taken from only one spin, the achieved tomography fidelity values can reach about 90%. The developed machine learning framework is applicable to any time-dependent systems whose quantum dynamical evolution is governed by the Heisenberg equation of motion.
Date Created
2022
Agent