JEDAI.Ed: An Interactive Explainable AI Platform for Outreach with Robotics Programming

193839-Thumbnail Image.png
Description
While the growing prevalence of robots in industry and daily life necessitatesknowing how to operate them safely and effectively, the steep learning curve of programming languages and formal AI education is a barrier for most beginner users. This thesis presents an interactive

While the growing prevalence of robots in industry and daily life necessitatesknowing how to operate them safely and effectively, the steep learning curve of programming languages and formal AI education is a barrier for most beginner users. This thesis presents an interactive platform which leverages a block based programming interface with natural language instructions to teach robotics programming to novice users. An integrated robot simulator allows users to view the execution of their high-level plan, with the hierarchical low level planning abstracted away from them. Users are provided human-understandable explanations of their planning failures and hints using LLMs to enhance the learning process. The results obtained from a user study conducted with students having minimal programming experience show that JEDAI-Ed is successful in teaching robotic planning to users, as well as increasing their curiosity about AI in general.
Date Created
2024
Agent

Data-Efficient Paradigms for Personalized Assessment of Taskable AI Systems

193680-Thumbnail Image.png
Description
Recent advances in Artificial Intelligence (AI) have brought AI closer to laypeople than ever before. This leads to a pervasive problem: how would a user ascertain whether an AI system will be safe, reliable, or useful in a given situation?

Recent advances in Artificial Intelligence (AI) have brought AI closer to laypeople than ever before. This leads to a pervasive problem: how would a user ascertain whether an AI system will be safe, reliable, or useful in a given situation? This problem becomes particularly challenging when it is considered that most autonomous systems are not designed by their users; the internal software of these systems may be unavailable or difficult to understand; and the functionality of these systems may even change from initial specifications as a result of learning. To overcome these challenges, this dissertation proposes a paradigm for third-party autonomous assessment of black-box taskable AI systems. The four main desiderata of such assessment systems are: (i) interpretability: generating a description of the AI system's functionality in a language that the target user can understand; (ii) correctness: ensuring that the description of AI system's working is accurate; (iii) generalizability creating a solution approach that works well for different types of AI systems; and (iv) minimal requirements: creating an assessment system that does not place complex requirements on AI systems to support the third-party assessment, otherwise the manufacturers of AI system's might not support such an assessment. To satisfy these properties, this dissertation presents algorithms and requirements that would enable user-aligned autonomous assessment that helps the user understand the limits of a black-box AI system's safe operability. This dissertation proposes a personalized AI assessment module that discovers the high-level ``capabilities'' of an AI system with arbitrary internal planning algorithms/policies and learns an accurate symbolic description of these capabilities in terms of concepts that a user understands. Furthermore, the dissertation includes the associated theoretical results and the empirical evaluations. The results show that (i) a primitive query-response interface can enable the development of autonomous assessment modules that can derive a causally accurate user-interpretable model of the system's capabilities efficiently, and (ii) such descriptions are easier to understand and reason with for the users than the agent's primitive actions.
Date Created
2024
Agent

Autonomously Learning World-Model Representations For Efficient Robot Planning

193613-Thumbnail Image.png
Description
In today's world, robotic technology has become increasingly prevalent across various fields such as manufacturing, warehouses, delivery, and household applications. Planning is crucial for robots to solve various tasks in such difficult domains. However, most robots rely heavily on humans

In today's world, robotic technology has become increasingly prevalent across various fields such as manufacturing, warehouses, delivery, and household applications. Planning is crucial for robots to solve various tasks in such difficult domains. However, most robots rely heavily on humans for world models that enable planning. Consequently, it is not only expensive to create such world models, as it requires human experts who understand the domain as well as robot limitations, these models may also be biased by human embodiment, which can be limiting for robots whose kinematics are not human-like. This thesis answers the fundamental question: Can we learn such world models automatically? This research shows that we can learn complex world models directly from unannotated and unlabeled demonstrations containing only the configurations of the robot and the objects in the environment. The core contributions of this thesis are the first known approaches for i) task and motion planning that explicitly handle stochasticity, ii) automatically inventing neuro-symbolic state and action abstractions for deterministic and stochastic motion planning, and iii) automatically inventing relational and interpretable world models in the form of symbolic predicates and actions. This thesis also presents a thorough and rigorous empirical experimentation. With experiments in both simulated and real-world settings, this thesis has demonstrated the efficacy and robustness of automatically learned world models in overcoming challenges, generalizing beyond situations encountered during training.
Date Created
2024
Agent

Applications of Conditional Abstractions for Sample Efficient And Scalable Reinforcement Learning

193583-Thumbnail Image.png
Description
Reinforcement Learning (RL) presents a diverse and expansive collection of approaches that enable systems to learn and adapt through interaction with their environments. However, the widespread deployment of RL in real-world applications is hindered by challenges related to sample efficiency

Reinforcement Learning (RL) presents a diverse and expansive collection of approaches that enable systems to learn and adapt through interaction with their environments. However, the widespread deployment of RL in real-world applications is hindered by challenges related to sample efficiency and the interpretability of decision-making processes. This thesis addresses the critical challenges of sample efficiency and interpretability in reinforcement learning (RL), which are pivotal for advancing RL applications in complex, real-world scenarios.This work first presents a novel approach for learning dynamic abstract representations for continuous or parameterized state and action spaces. Empirical evaluations show that the proposed approach achieves a higher sample efficiency and beat state- of-the-art Deep-RL methods. Second, it presents a new approach HOPL for Transfer Reinforcement Learning (RL) for Stochastic Shortest Path (SSP) problems in factored domains with unknown transition functions. This approach continually learns transferable, generalizable knowledge in the form of symbolically represented options and integrates search techniques with RL to solve new problems by efficiently composing the learned options. The empirical results show that the approach achieves superior sample efficiency as compared to SOTA methods for transfering learned knowledge.
Date Created
2024
Agent

LanSAR – Language-commanded Scene-aware Action Response

193467-Thumbnail Image.png
Description
Robot motion and control remains a complex problem both in general and inthe field of machine learning (ML). Without ML approaches, robot controllers are typically designed manually, which can take considerable time, generally requiring accounting for a range of edge cases and

Robot motion and control remains a complex problem both in general and inthe field of machine learning (ML). Without ML approaches, robot controllers are typically designed manually, which can take considerable time, generally requiring accounting for a range of edge cases and often producing models highly constrained to specific tasks. ML can decrease the time it takes to create a model while simultaneously allowing it to operate on a broader range of tasks. The utilization of neural networks to learn from demonstration is, in particular, an approach with growing popularity due to its potential to quickly fit the parameters of a model to mimic training data. Many such neural networks, especially in the realm of transformer-based architectures, act more as planners, taking in an initial context and then generating a sequence from that context one step at a time. Others hybridize the approach, predicting a latent plan and conditioning immediate actions on that plan. Such approaches may limit a model’s ability to interact with a dynamic environment, needing to replan to fully update its understanding of the environmental context. In this thesis, Language-commanded Scene-aware Action Response (LanSAR) is proposed as a reactive transformer-based neural network that makes immediate decisions based on previous actions and environmental changes. Its actions are further conditioned on a language command, serving as a control mechanism while also narrowing the distribution of possible actions around this command. It is shown that LanSAR successfully learns a strong representation of multimodal visual and spatial input, and learns reasonable motions in relation to most language commands. It is also shown that LanSAR can struggle with both the accuracy of motions and understanding the specific semantics of language commands
Date Created
2024
Agent

Enhancing and Evaluating Neural Network Extraction Through Floating Point Timing Side Channels

190944-Thumbnail Image.png
Description
The rise in popularity of applications and services that charge for access to proprietary trained models has led to increased interest in the robustness of these models and the security of the environments in which inference is conducted. State-of-the-art attacks

The rise in popularity of applications and services that charge for access to proprietary trained models has led to increased interest in the robustness of these models and the security of the environments in which inference is conducted. State-of-the-art attacks extract models and generate adversarial examples by inferring relationships between a model’s input and output. Popular variants of these attacks have been shown to be deterred by countermeasures that poison predicted class distributions and mask class boundary gradients. Neural networks are also vulnerable to timing side-channel attacks. This work builds on top of Subneural, an attack framework that uses floating point timing side channels to extract neural structures. Novel applications of addition timing side channels are introduced, allowing the signs and arrangements of leaked parameters to be discerned more efficiently. Addition timing is also used to leak network biases, making the framework applicable to a wider range of targets. The enhanced framework is shown to be effective against models protected by prediction poisoning and gradient masking adversarial countermeasures and to be competitive with adaptive black box adversarial attacks against stateful defenses. Mitigations necessary to protect against floating-point timing side-channel attacks are also presented.
Date Created
2023
Agent

Design and Modeling of Soft Curved Reconfigurable Anisotropic Mechanisms

189313-Thumbnail Image.png
Description
This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various

This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic structures to tackle these challenges in soft robots. SCRAM devices can modify their dynamic behavior by incorporating reconfigurable anisotropic stiffness, thereby enabling tailored locomotion patterns for specific tasks. This approach simplifies the actuation of robots, resulting in lighter, more flexible, cost-effective, and safer soft robotic systems. This dissertation demonstrates the potential of SCRAM devices through several case studies. These studies investigate virtual joints and shape change propagation in tubes, as well as anisotropic dynamic behavior in vibrational soft twisted beams, effectively demonstrating interesting locomotion patterns that are achievable using simple actuation mechanisms. The dissertation also addresses modeling and simulation challenges by introducing a reduced-order modeling approach. This approach enables fast and accurate simulations of soft robots and is compatible with existing rigid body simulators. Additionally, this dissertation investigates the prototyping processes of SCRAM devices and offers a comprehensive framework for the development of these devices. Overall, this dissertation demonstrates the potential of SCRAM devices to overcome actuation, modeling, and manufacturing challenges in soft robotics. The innovative concepts and approaches presented have implications for various industries that require cost-effective, adaptable, and safe robotic systems. SCRAM devices pave the way for the widespread application of soft robots in diverse domains.
Date Created
2023
Agent

Foundations of Human-Aware Explanations for Sequential Decision-Making Problems

171959-Thumbnail Image.png
Description
Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from

Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from all walks of life using and working with these systems has also spurred a lot of interest in ensuring that AI systems can efficiently and effectively work and collaborate with their intended users. Chief among the efforts in this direction has been the pursuit of imbuing these agents with the ability to provide intuitive and useful explanations regarding their decisions and actions to end-users. In this dissertation, I will describe various works that I have done in the area of explaining sequential decision-making problems. Furthermore, I will frame the discussions of my work within a broader framework for understanding and analyzing explainable AI (XAI). My works herein tackle many of the core challenges related to explaining automated decisions to users including (1) techniques to address asymmetry in knowledge between the user and the system, (2) techniques to address asymmetry in inferential capabilities, and (3) techniques to address vocabulary mismatch.The dissertation will also describe the works I have done in generating interpretable behavior and policy summarization. I will conclude this dissertation, by using the framework of human-aware explanation as a lens to analyze and understand the current landscape of explainable planning.
Date Created
2022
Agent

Max Markov Chain

171601-Thumbnail Image.png
Description
High-order Markov Chains are useful in a variety of situations. However, theseprocesses are limited in the complexity of the domains they can model. In complex domains, Markov models can require 100’s of Gigabytes of ram leading to the need of a parsimonious

High-order Markov Chains are useful in a variety of situations. However, theseprocesses are limited in the complexity of the domains they can model. In complex domains, Markov models can require 100’s of Gigabytes of ram leading to the need of a parsimonious model. In this work, I present the Max Markov Chain (MMC). A robust model for estimating high-order datasets using only first-order parameters. High-order Markov chains (HMC) and Markov approximations (MTDg) struggle to scale to large state spaces due to the exponentially growing number of parameters required to model these domains. MMC can accurately approximate these models using only first-order parameters given the domain fulfills the MMC assumption. MMC naturally has better sample efficiency, and the desired spatial and computational advantages over HMCs and approximate HMCs. I will present evidence demonstrating the effectiveness of MMC in a variety of domains and compare its performance with HMCs and Markov approximations. Human behavior is inherently complex and challenging to model. Due to the high number of parameters required for traditional Markov models, the excessive computing requirements make real-time human simulation computationally expensive and impractical. I argue in certain situations, the behavior of humans follows that of a sparsely connected Markov model. In this work I focus on the subset of Markov Models which are just that, sparsely connected.
Date Created
2022
Agent

Incorporating Human Cognitive Limitations Into Sequential Decision Making Problems and Algorithms

171413-Thumbnail Image.png
Description
With improvements in automation and system capabilities, human responsibilities in those advanced systems can get more complicated; greater situational awareness and performance may be asked of human agents in roles such as fail-safe operators. This phenomenon of automation improvements requiring

With improvements in automation and system capabilities, human responsibilities in those advanced systems can get more complicated; greater situational awareness and performance may be asked of human agents in roles such as fail-safe operators. This phenomenon of automation improvements requiring more from humans in the loop, is connected to the well-known “paradox of automation”. Unfortunately, humans have cognitive limitations that can constrain a person's performance on a task. If one considers human cognitive limitations when designing solutions or policies for human agents, then better results are possible. The focus of this dissertation is on improving human involvement in planning and execution for Sequential Decision Making (SDM) problems. Existing work already considers incorporating humans into planning and execution in SDM, but with limited consideration for cognitive limitations. The work herein focuses on how to improve human involvement through problems in motion planning, planning interfaces, Markov Decision Processes (MDP), and human-team scheduling. This done by first discussing the human modeling assumptions currently used in the literature and their shortcomings. Then this dissertation tackles a set of problems by considering problem-specific human cognitive limitations --such as those associated with memory and inference-- as well as use lessons from fields such as cognitive ergonomics.
Date Created
2022
Agent