171959-Thumbnail Image.png
Description
Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from

Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from all walks of life using and working with these systems has also spurred a lot of interest in ensuring that AI systems can efficiently and effectively work and collaborate with their intended users. Chief among the efforts in this direction has been the pursuit of imbuing these agents with the ability to provide intuitive and useful explanations regarding their decisions and actions to end-users. In this dissertation, I will describe various works that I have done in the area of explaining sequential decision-making problems. Furthermore, I will frame the discussions of my work within a broader framework for understanding and analyzing explainable AI (XAI). My works herein tackle many of the core challenges related to explaining automated decisions to users including (1) techniques to address asymmetry in knowledge between the user and the system, (2) techniques to address asymmetry in inferential capabilities, and (3) techniques to address vocabulary mismatch.The dissertation will also describe the works I have done in generating interpretable behavior and policy summarization. I will conclude this dissertation, by using the framework of human-aware explanation as a lens to analyze and understand the current landscape of explainable planning.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Foundations of Human-Aware Explanations for Sequential Decision-Making Problems
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Computer Science

    Machine-readable links