Hacking the Learning Curve: Effective Cybersecurity Education at Scale

193577-Thumbnail Image.png
Description
This dissertation introduces a comprehensive framework aimed at reshaping applied cybersecurity education to significantly ease the learning curve, at scale, through three synergistic innovations. These methods address the daunting educational barriers in cybersecurity, enabling learners at all levels to understand

This dissertation introduces a comprehensive framework aimed at reshaping applied cybersecurity education to significantly ease the learning curve, at scale, through three synergistic innovations. These methods address the daunting educational barriers in cybersecurity, enabling learners at all levels to understand complex security concepts more easily. The first innovation, the PWN methodology, redefines the traditional Capture The Flag (CTF) model by offering a structured series of modularized, self-guided challenges. This approach helps simplify complex topics into manageable units, each building on the last, which allows students to progress at their own pace. Over five years and with over 400 systems security challenges developed, this method has effectively helped students evolve from beginners to masters of advanced security exploits. The second component is the DOJO platform, an open-source learning environment that uses containerization technology to provide a pre-configured, browser-based interface. This platform reduces the setup complexities associated with applied cybersecurity and has already given over 10,000 students immediate access to practical learning scenarios, from vulnerability discovery to advanced debugging, in a unified, user-friendly environment. Its seamless integration allows educators to quickly launch new challenges and resources, ensuring a continuous and dynamic educational experience. The third component, the SENSAI tutor, is an AI-driven tutoring system that leverages Large Language Models to offer personalized, intelligent support. Integrated with the PWN methodology and DOJO platform, SENSAI serves as an on-demand mentor, providing tailored advice and problem-solving assistance. It adapts to individual student needs, offering specific guidance and theoretical support to enhance understanding and retention of complex concepts. Together, these three components create a powerful, integrated educational strategy that not only equips students with vital cybersecurity skills but also deepens their understanding of digital vulnerabilities and the strategic thinking needed to mitigate them. This strategy prepares a new generation of cybersecurity professionals to navigate the ever-evolving threats of the digital world.
Date Created
2024
Agent

Enhancing and Evaluating Neural Network Extraction Through Floating Point Timing Side Channels

190944-Thumbnail Image.png
Description
The rise in popularity of applications and services that charge for access to proprietary trained models has led to increased interest in the robustness of these models and the security of the environments in which inference is conducted. State-of-the-art attacks

The rise in popularity of applications and services that charge for access to proprietary trained models has led to increased interest in the robustness of these models and the security of the environments in which inference is conducted. State-of-the-art attacks extract models and generate adversarial examples by inferring relationships between a model’s input and output. Popular variants of these attacks have been shown to be deterred by countermeasures that poison predicted class distributions and mask class boundary gradients. Neural networks are also vulnerable to timing side-channel attacks. This work builds on top of Subneural, an attack framework that uses floating point timing side channels to extract neural structures. Novel applications of addition timing side channels are introduced, allowing the signs and arrangements of leaked parameters to be discerned more efficiently. Addition timing is also used to leak network biases, making the framework applicable to a wider range of targets. The enhanced framework is shown to be effective against models protected by prediction poisoning and gradient masking adversarial countermeasures and to be competitive with adaptive black box adversarial attacks against stateful defenses. Mitigations necessary to protect against floating-point timing side-channel attacks are also presented.
Date Created
2023
Agent

Modeling State to Improve Defensive Cyberattack Strategies

190728-Thumbnail Image.png
Description
Human civilization within the last two decades has largely transformed into an online one, with many of its associated activities taking place on computers and complex networked systems -- their analog and real-world equivalents having been rendered obsolete.These activities run

Human civilization within the last two decades has largely transformed into an online one, with many of its associated activities taking place on computers and complex networked systems -- their analog and real-world equivalents having been rendered obsolete.These activities run the gamut from the ordinary and mundane, like ordering food, to complex and large-scale, such as those involving critical infrastructure or global trade and communications. Unfortunately, the activities of human civilization also involve criminal, adversarial, and malicious ones with the result that they also now have their digital equivalents. Ransomware, malware, and targeted cyberattacks are a fact of life today and are instigated not only by organized criminal gangs, but adversarial nation-states and organizations as well. Needless to say, such actions result in disastrous and harmful real-world consequences. As the complexity and variety of software has evolved, so too has the ingenuity of attacks that exploit them; for example modern cyberattacks typically involve sequential exploitation of multiple software vulnerabilities.Compared to a decade ago, modern software stacks on personal computers, laptops, servers, mobile phones, and even Internet of Things (IoT) devices involve a dizzying array of interdependent programs and software libraries, with each of these components presenting attractive attack-surfaces for adversarial actors. However, the responses to this still rely on paradigms that can neither react quickly enough nor scale to increasingly dynamic, ever-changing, and complex software environments. Better approaches are therefore needed, that can assess system readiness and vulnerabilities, identify potential attack vectors and strategies (including ways to counter them), and proactively detect vulnerabilities in complex software before they can be exploited. In this dissertation, I first present a mathematical model and associated algorithms to identify attacker strategies for sequential cyberattacks based on attacker state, attributes and publicly-available vulnerability information.Second, I extend the model and design algorithms to help identify defensive courses of action against attacker strategies. Finally, I present my work to enhance the ability of coverage-based fuzzers to identify software vulnerabilities by providing visibility into complex, internal program-states.
Date Created
2023
Agent

Unearthing Hidden Bugs: Harnessing Fuzzing With Dynamic Patching in FlakJack

189330-Thumbnail Image.png
Description
This thesis presents a study on the fuzzing of Linux binaries to find occluded bugs. Fuzzing is a widely-used technique for identifying software bugs. Despite their effectiveness, state-of-the-art fuzzers suffer from limitations in efficiency and effectiveness. Fuzzers based on random

This thesis presents a study on the fuzzing of Linux binaries to find occluded bugs. Fuzzing is a widely-used technique for identifying software bugs. Despite their effectiveness, state-of-the-art fuzzers suffer from limitations in efficiency and effectiveness. Fuzzers based on random mutations are fast but struggle to generate high-quality inputs. In contrast, fuzzers based on symbolic execution produce quality inputs but lack execution speed. This paper proposes FlakJack, a novel hybrid fuzzer that patches the binary on the go to detect occluded bugs guarded by surface bugs. To dynamically overcome the challenge of patching binaries, the paper introduces multiple patching strategies based on the type of bug detected. The performance of FlakJack was evaluated on ten widely-used real-world binaries and one chaff dataset binary. The results indicate that many bugs found recently were already present in previous versions but were occluded by surface bugs. FlakJack’s approach improved the bug-finding ability by patching surface bugs that usually guard occluded bugs, significantly reducing patching cycles. Despite its unbalanced approach compared to other coverage-guided fuzzers, FlakJack is fast, lightweight, and robust. False- Positives can be filtered out quickly, and the approach is practical in other parts of the target. The paper shows that the FlakJack approach can significantly improve fuzzing performance without relying on complex strategies.
Date Created
2023
Agent

Attacking Computer Security from the Perspective of Educators, Users, and Analysts

187772-Thumbnail Image.png
Description
As computers and the Internet have become integral to daily life, the potential gains from exploiting these resources have increased significantly. The global landscape is now rife with highly skilled wrongdoers seeking to steal from and disrupt society. In order

As computers and the Internet have become integral to daily life, the potential gains from exploiting these resources have increased significantly. The global landscape is now rife with highly skilled wrongdoers seeking to steal from and disrupt society. In order to safeguard society and its infrastructure, a comprehensive approach to research is essential. This work aims to enhance security from three unique viewpoints by expanding the resources available to educators, users, and analysts. For educators, a capture the flag as-a-service was developed to support cybersecurity education. This service minimizes the skill and time needed to establish the infrastructure for hands-on hacking experiences for cybersecurity students. For users, a tool called CloakX was created to improve online anonymity. CloakX prevents the identification of browser extensions by employing both static and dynamic rewriting techniques, thwarting contemporary methods of detecting installed extensions and thus protecting user identity. Lastly, for cybersecurity analysts, a tool named Witcher was developed to automate the process of crawling and exercising web applications while identifying web injection vulnerabilities. Overall, these contributions serve to strengthen security education, bolster privacy protection for users, and facilitate vulnerability discovery for cybersecurity analysts.
Date Created
2023
Agent

Representation Learning for Trustworthy AI

187381-Thumbnail Image.png
Description
Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL)

Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL) methods which present challenges for human experts to design and evaluate such models with respect to privacy, fairness, and robustness. Recent examination of DL models reveals that representations may include information that could lead to privacy violations, unfairness, and robustness issues. This results in AI systems that are potentially untrustworthy from a socio-technical standpoint. Trustworthiness in AI is defined by a set of model properties such as non-discriminatory bias, protection of users’ sensitive attributes, and lawful decision-making. The characteristics of trustworthy AI can be grouped into three categories: Reliability, Resiliency, and Responsibility. Past research has shown that the successful integration of an AI model depends on its trustworthiness. Thus it is crucial for organizations and researchers to build trustworthy AI systems to facilitate the seamless integration and adoption of intelligent technologies. The main issue with existing AI systems is that they are primarily trained to improve technical measures such as accuracy on a specific task but are not considerate of socio-technical measures. The aim of this dissertation is to propose methods for improving the trustworthiness of AI systems through representation learning. DL models’ representations contain information about a given input and can be used for tasks such as detecting fake news on social media or predicting the sentiment of a review. The findings of this dissertation significantly expand the scope of trustworthy AI research and establish a new paradigm for modifying data representations to balance between properties of trustworthy AI. Specifically, this research investigates multiple techniques such as reinforcement learning for understanding trustworthiness in users’ privacy, fairness, and robustness in classification tasks like cyberbullying detection and fake news detection. Since most social measures in trustworthy AI cannot be used to fine-tune or train an AI model directly, the main contribution of this dissertation lies in using reinforcement learning to alter an AI system’s behavior based on non-differentiable social measures.
Date Created
2023
Agent

Trapped in Transparency: Analyzing the Effectiveness of Security Defenses in Real-World Scenarios

171778-Thumbnail Image.png
Description
Honeypots – cyber deception technique used to lure attackers into a trap. They contain fake confidential information to make an attacker believe that their attack has been successful. One of the prerequisites for a honeypot to be effective is that

Honeypots – cyber deception technique used to lure attackers into a trap. They contain fake confidential information to make an attacker believe that their attack has been successful. One of the prerequisites for a honeypot to be effective is that it needs to be undetectable. Deploying sniffing and event logging tools alongside the honeypot also helps understand the mindset of the attacker after successful attacks. Is there any data that backs up the claim that honeypots are effective in real life scenarios? The answer is no.Game-theoretic models have been helpful to approximate attacker and defender actions in cyber security. However, in the past these models have relied on expert- created data. The goal of this research project is to determine the effectiveness of honeypots using real-world data. So, how to deploy effective honeypots? This is where honey-patches come into play. Honey-patches are software patches designed to hinder the attacker’s ability to determine whether an attack has been successful or not. When an attacker launches a successful attack on a software, the honey-patch transparently redirects the attacker into a honeypot. The honeypot contains fake information which makes the attacker believe they were successful while in reality they were not. After conducting a series of experiments and analyzing the results, there is a clear indication that honey-patches are not the perfect application security solution having both pros and cons.
Date Created
2022
Agent

Visualizing Information Flow Graph-Based Approach to Tracing Data Dependencies for Binary Analysis

171711-Thumbnail Image.png
Description
Binary analysis and software debugging are critical tools in the modern softwaresecurity ecosystem. With the security arms race between attackers discovering and exploiting vulnerabilities and the development teams patching bugs ever-tightening, there is an immense need for more tooling to streamline the

Binary analysis and software debugging are critical tools in the modern softwaresecurity ecosystem. With the security arms race between attackers discovering and exploiting vulnerabilities and the development teams patching bugs ever-tightening, there is an immense need for more tooling to streamline the binary analysis and debugging processes. Whether attempting to find the root cause for a buffer overflow or a segmentation fault, the analysis process often involves manually tracing the movement of data throughout a program’s life cycle. Up until this point, there has not been a viable solution to the human limitation of maintaining a cohesive mental image of the intricacies of a program’s data flow. This thesis proposes a novel data dependency graph (DDG) analysis as an addi- tion to angr’s analyses suite. This new analysis ingests a symbolic execution trace in order to generate a directed acyclic graph of the program’s data dependencies. In addition to the development of the backend logic needed to generate this graph, an angr management view to visualize the DDG was implemented. This user interface provides functionality for ancestor and descendant dependency tracing and sub-graph creation. To evaluate the analysis, a user study was conducted to measure the view’s efficacy in regards to binary analysis and software debugging. The study consisted of a control group and experimental group attempting to solve a series of 3 chal- lenges and subsequently providing feedback concerning perceived functionality and comprehensibility pertaining to the view. The results show that the view had a positive trend in relation to challenge-solving accuracy in its target domain, as participants solved 32% more challenges 21% faster when using the analysis than when using vanilla angr management.
Date Created
2022
Agent

Enhancing Binary Analysis through Cognitive Load Theory

171701-Thumbnail Image.png
Description
Reverse engineering is a process focused on gaining an understanding for the intricaciesof a system. This practice is critical in cybersecurity as it promotes the findings and patching of vulnerabilities as well as the counteracting of malware. Disassemblers and decompilers have become

Reverse engineering is a process focused on gaining an understanding for the intricaciesof a system. This practice is critical in cybersecurity as it promotes the findings and patching of vulnerabilities as well as the counteracting of malware. Disassemblers and decompilers have become essential when reverse engineering due to the readability of information they transcribe from binary files. However, these tools still tend to produce involved and complicated outputs that hinder the acquisition of knowledge during binary analysis. Cognitive Load Theory (CLT) explains that this hindrance is due to the human brain’s inability to process superfluous amounts of data. CLT classifies this data into three cognitive load types — intrinsic, extraneous, and germane — that each can help gauge complex procedures. In this research paper, a novel program call graph is presented accounting for these CLT principles. The goal of this graphical view is to reduce the cognitive load tied to the depiction of binary information and to enhance the overall binary analysis process. This feature was implemented within the binary analysis tool, angr and it’s user interface counterpart, angr-management. Additionally, this paper will examine a conducted user study to quantitatively and qualitatively evaluate the effectiveness of the newly proposed proximity view (PV). The user study includes a binary challenge solving portion measured by defined metrics and a survey phase to receive direct participant feedback regarding the view. The results from this study show statistically significant evidence that PV aids in challenge solving and improves the overall understanding binaries. The results also signify that this improvement comes with the cost of time. The survey section of the user study further indicates that users find PV beneficial to the reverse engineering process, but additional information needs to be included in future developments.
Date Created
2022
Agent

Extracting Semantic Information from Online Conversations to Enhance Cyber Defense

171434-Thumbnail Image.png
Description
Recent advances in techniques allow the extraction of Cyber Threat Information (CTI) from online content, such as social media, blog articles, and posts in discussion forums. Most research work focuses on social media and blog posts since their content is

Recent advances in techniques allow the extraction of Cyber Threat Information (CTI) from online content, such as social media, blog articles, and posts in discussion forums. Most research work focuses on social media and blog posts since their content is often contributed by cybersecurity experts and is usually of cleaner formats. While posts in online forums are noisier and less structured, online forums attract more users than other sources and contain much valuable information that may help predict cyber threats. Therefore, effectively extracting CTI from online forum posts is an important task in today's data-driven cybersecurity defenses. Many Natural Language Processing (NLP) techniques are applied to the cybersecurity domains to extract the useful information, however, there is still space to improve. In this dissertation, a new Named Entity Recognition framework for cybersecurity domains and thread structure construction methods for unstructured forums are proposed to support the extraction of CTI. Then, extend them to filter the posts in the forums to eliminate non cybersecurity related topics with Cyber Attack Relevance Scale (CARS), extract the cybersecurity knowledgeable users to enhance more information for enhancing cybersecurity, and extract trending topic phrases related to cyber attacks in the hackers forums to find the clues for potential future attacks to predict them.
Date Created
2022
Agent