Development, Modeling, and Testing of a Compliant Bistable Anguilliform Robot

Description
Undulatory locomotion is a unique form of swimming that generates thrust through the propagation of a wave through a fish’s body. The proposed device utilizes a constrained compliant material with a single actuator to generate an undulatory motion. This paper

Undulatory locomotion is a unique form of swimming that generates thrust through the propagation of a wave through a fish’s body. The proposed device utilizes a constrained compliant material with a single actuator to generate an undulatory motion. This paper draws inspiration from Anguilliformes and discusses the kinematics and dynamics of wave propagation of an underwater robot. A variety of parameters are explored through modeling and are optimized for thrust generation to better understand the device. This paper validates the theoretical spine behavior through experimentation and provides a path forward for future development in device optimization for various applications. Previous work developed devices that utilized either paired soft actuators or multiple redundant classical actuators that resulted in a complex prototype with intricate controls. The work of this paper contrasts with prior work in that it aims to achieve undulatory motion through passive actuation from a single actively driven point which simplifies the control. Through this work, the goal is to further explore low-cost soft robotics via bistable mechanisms, continuum material properties, and simplified modeling practices.
Date Created
2023
Agent

Enhancing Visual Odometry in Autonomous Vehicles

Description

Visual odometry (VO) plays a crucial role in determining the position and orientation of an autonomous vehicle as it navigates through its environment. However, the performance of visual odometry can be significantly affected by errors in disparity estimation and LIDAR

Visual odometry (VO) plays a crucial role in determining the position and orientation of an autonomous vehicle as it navigates through its environment. However, the performance of visual odometry can be significantly affected by errors in disparity estimation and LIDAR depth measurements. This thesis investigates the use of LIDAR depth correction and Stereo disparity matching, combined with stronger match filtering, to improve the accuracy and reliability of VO estimations. The study utilizes a dataset consisting of a sequence of image frames, ground truth position data, and a range of feature detection, description, and matching techniques. Results indicate that the proposed approach significantly improves the accuracy of VO estimations, providing a valuable contribution to the development of reliable and safe autonomous navigation systems. The proposed method consists of two main components: (1) an advanced disparity matching algorithm to obtain more accurate and robust disparity estimations, and (2) a LIDAR depth correction module that employs a sensor fusion approach to refine the depth information generated by LIDAR sensors. The LIDAR depth correction module combines data from multiple sensors, including LIDAR, camera, and inertial measurement unit (IMU), to produce a more accurate depth estimation. The performance of the proposed approach is evaluated using real-world datasets and benchmark visual odometry challenges. Results demonstrate that the proposed method significantly improves the accuracy and robustness of visual odometry, leading to better localization and navigation performance for autonomous vehicles. This research contributes to the ongoing development of autonomous vehicle technology by addressing critical challenges in visual odometry and offering a practical solution for more accurate and reliable self-localization

Date Created
2023-05
Agent

Collision-Averse and Dynamics-Aware B-Spline Derived Motion Planning for
Autonomous Vehicles

Description

The seamless integration of autonomous vehicles (AVs) into highly interactive and dynamic driving environments requires AVs to safely and effectively communicate with human drivers. Furthermore, the design of motion planning strategies that satisfy safety constraints inherit the challenges involved in

The seamless integration of autonomous vehicles (AVs) into highly interactive and dynamic driving environments requires AVs to safely and effectively communicate with human drivers. Furthermore, the design of motion planning strategies that satisfy safety constraints inherit the challenges involved in implementing a safety-critical and dynamics-aware motion planning algorithm that produces feasible motion trajectories. Driven by the complexities of arriving at such a motion planner, this thesis leverages a motion planning toolkit that utilizes spline parameterization to compute the optimal motion trajectory within a dynamic environment. Our approach is comprised of techniques originating from optimal control, vehicle dynamics, and spline interpolation. To ensure dynamic feasibility of the computed trajectories, we formulate the optimal control problem in relation to the intrinsic state constraints derived from the bicycle state space model. In addition, we apply input constraints to bound the rate of change of the steering angle and acceleration provided to the system. To produce collision-averse trajectories, we enforce extrinsic state constraints extracted from the static and dynamic obstacles in the circumambient environment. We proceed to exploit the mathematical properties of B-splines, such as the Convex Hull Property, and the piecewise composition of polynomial functions. Second, we focus on constructing a highly interactive environment in which the con- figured optimal control problem is deployed. Vehicle interactions are categorized into two distinct cases: Case 1 is representative of a single-agent interaction, whereas Case 2 is representative of a multi-agent interaction. The computed motion trajectories per each case are displayed in simulation.

Date Created
2023-05
Agent

What Do You Want Me To Do? Addressing Model Differences for Human-Aware Decision-Making from A Learning Perspective

171876-Thumbnail Image.png
Description
As intelligent agents become pervasive in our lives, they are expected to not only achieve tasks alone but also engage in tasks with humans in the loop. In such cases, the human naturally forms an understanding of the agent, which

As intelligent agents become pervasive in our lives, they are expected to not only achieve tasks alone but also engage in tasks with humans in the loop. In such cases, the human naturally forms an understanding of the agent, which affects his perception of the agent’s behavior. However, such an understanding inevitably deviates from the ground truth due to reasons such as the human’s lack of understanding of the domain or misunderstanding of the agent’s capabilities. Such differences would result in an unmatched expectation of the agent’s behavior with the agent’s optimal behavior, thereby biasing the human’s assessment of the agent’s performance. In this dissertation, I focus on when these differences are due to a biased belief about domain dynamics. I especially investigate the impact of such a biased belief on the agent’s decision-making process in two different problem settings from a learning perspective. In the first setting, the agent is tasked to accomplish a task alone but must infer the human’s objectives from the human’s feedback on the agent’s behavior in the environment. In such a case, the human biased feedback could mislead the agent to learn a reward function that results in a sub-optimal and, potentially, undesired policy. In the second setting, the agent must accomplish a task with a human observer. Given that the agent’s optimal behavior may not match the human’s expectation due to the biased belief, the agent’s optimal behavior may be viewed as inexplicable, leading to degraded performance and loss of trust. Consequently, this dissertation proposes approaches that (1) endow the agent with the ability to be aware of the human’s biased belief while inferring the human’s objectives, thereby (2) neutralize the impact of the model differences in a reinforcement learning framework, and (3) behave explicably by reconciling the human’s expectation and optimality during decision-making.
Date Created
2022
Agent

Real-Time Semantic Mapping of Tree Topology Using Deep Learning and Multi-Sensor Factor Graph

171772-Thumbnail Image.png
Description
Physical and structural tree measurements are applied in forestry, precision agriculture and conservation for various reasons. Since measuring tree properties manually is tedious, measurements from only a small subset of trees present in a forest, agricultural land or survey site

Physical and structural tree measurements are applied in forestry, precision agriculture and conservation for various reasons. Since measuring tree properties manually is tedious, measurements from only a small subset of trees present in a forest, agricultural land or survey site are often used. Utilizing robotics to autonomously estimate physical tree dimensions would speed up the measurement or data collection process and allow for a much larger set of trees to be used in studies. In turn, this would allow studies to make more generalizable inferences about areas with trees. To this end, this thesis focuses on developing a system that generates a semantic representation of the topology of a tree in real-time. The first part describes a simulation environment and a real-world sensor suite to develop and test the tree mapping pipeline proposed in this thesis. The second part presents details of the proposed tree mapping pipeline. Stage one of the mapping pipeline utilizes a deep learning network to detect woody and cylindrical portions of a tree like trunks and branches based on popular semantic segmentation networks. Stage two of the pipeline proposes an algorithm to separate the detected portions of a tree into individual trunk and branch segments. The third stage implements an optimization algorithm to represent each segment parametrically as a cylinder. The fourth stage formulates a multi-sensor factor graph to incrementally integrate and optimize the semantic tree map while also fusing two forms of odometry. Finally, results from all the stages of the tree mapping pipeline using simulation and real-world data are presented. With these implementations, this thesis provides an end-to-end system to estimate tree topology through semantic representations for forestry and precision agriculture applications.
Date Created
2022
Agent

Optimization of Multibody Dynamic Models and Their Controllers

171733-Thumbnail Image.png
Description
Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables

Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design and crash testing, and mapping interactions of the human body. An accurate model can aid in the design of a system to ensure the system is effective and meets specified performance criteria when built. A model may have many design parameters, such as geometrical constraints and component mechanical properties, or controller parameters if the system uses an external controller. Varying these parameters and rerunning analyses by hand to find an ideal design can be time consuming for models that take hours or days to run. To reduce the amount of time required to find a set of parameters that produces a desired performance, optimization is necessary. Many papers have discussed methods for optimizing rigid and flexible MBD models, and separately their controllers, using both gradient-based and gradient-free algorithms. However, these optimization methods have not been used to optimize full-scale MBD models and their controllers simultaneously. This thesis presents a method for co-optimizing an MBD model and controller that allows for the flexibility to find model and controller-based solutions for systems with tightly coupled parameters. Specifically, the optimization is performed on a quadrotor drone MBD model undergoing disturbance from a slung load and its position controller to meet specified position error performance criteria. A gradient-free optimization algorithm and multiple objective approach is used due to the many local optima from the tradeoffs between the model and controller parameters. The thesis uses nine different quadrotor cases with three different position error formulations. The results are used to determine the effectiveness of the optimization and the ability to converge on a single optimal design. After reviewing the results, the optimization limitations are discussed as well as the ability to transition the optimization to work with different MBD models and their controllers.
Date Created
2022
Agent

Robust Extended Kalman Filter Based Sensor Fusion for Soft Robot State Estimation and Control

171669-Thumbnail Image.png
Description
Soft robots provide an additional measure of safety and compliance over traditionalrigid robots. Generally, control and modelling experiments take place using a motion capture system for measuring robot configuration. While accurate, motion capture systems are expensive and require re-calibration whenever the cameras

Soft robots provide an additional measure of safety and compliance over traditionalrigid robots. Generally, control and modelling experiments take place using a motion capture system for measuring robot configuration. While accurate, motion capture systems are expensive and require re-calibration whenever the cameras are adjusted. While advances in soft sensors contribute to a potential solution to sensing outside of a lab environment, most of these sensing methods require the sensors to be embedded into the soft robot arm. In this work, a more practical sensing method is proposed using off-the-shelf sensors and a Robust Extended Kalman Filter based sensor fusion method. Inertial measurement unit sensors and wire draw sensors are used to accurately estimate the state of the robot. An explanation for the need for sensor fusion is included in this work. The sensor fusion state estimate is compared to a motion capture measurement along with the raw inertial measurement unit reading to verify the accuracy of the results. The potential for this sensing system is further validated through Linear Quadratic Gaussian control of the soft robot. The Robust Extended Kalman Filter based sensor fusion shows an error of less than one degree when compared to the motion capture system.
Date Created
2022
Agent

Classification of Fabric Based Soft Actuators and Feedback Controller for At-home Hand Rehabilitation

171660-Thumbnail Image.png
Description
With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when

With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies lower coverage and/or raise prices of plans with sufficient coverage, it can be expected that the proportion of uninsured/under insured to fully insured people will rise. To address this, lower cost alternative methods of treatment must be developed so people can obtain the treated required for a sufficient recovery. The presented robotic glove employs low cost fabric soft pneumatic actuators which use a closed loop feedback controller based on readings from embedded soft sensors. This provides the device with proprioceptive abilities for the dynamic control of each independent actuator. Force and fatigue tests were performed to determine the viability of the actuator design. A Box and Block test along with a motion capture study was completed to study the performance of the device. This paper presents the design and classification of a soft robotic glove with a feedback controller as a at-home stroke rehabilitation device.
Date Created
2022
Agent

Passive and Active Model Discrimination Algorithms for Constrained Uncertain Systems with Applications to Set-Valued Intent Identification and Fault Detection

171530-Thumbnail Image.png
Description
Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and

Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained input-output data to invalidate the models, while AMD designs an auxiliary input to assist the discrimination process. First, PMD algorithms are proposed for noisy switched nonlinear systems constrained by metric/signal temporal logic specifications, including systems with lossy data modeled by (m,k)-firm constraints. Specifically, optimization-based algorithms are introduced for analyzing the detectability/distinguishability of models and for ruling out models that are inconsistent with observations at run time. On the other hand, two AMD approaches are designed for noisy switched nonlinear models and piecewise affine inclusion models, which involve bilevel optimization with integer variables/constraints in the inner/lower level. The first approach solves the inner problem using mixed-integer parametric optimization, whose solution is included when solving the outer problem/higher level, while the second approach moves the integer variables/constraints to the outer problem in a manner that retains feasibility and recasts the problem as a tractable mixed-integer linear programming (MILP). Furthermore, AMD algorithms are proposed for noisy discrete-time affine time-invariant systems constrained by disjunctive and coupled safety constraints. To overcome the issues associated with generalized semi-infinite constraints due to state-dependent input constraints and disjunctive safety constraints, several constraint reformulations are proposed to recast the AMD problems as tractable MILPs. Finally, partition-based AMD approaches are proposed for noisy discrete-time affine time-invariant models with model-independent parameters and output measurement that are revealed at run time. Specifically, algorithms with fixed and adaptive partitions are proposed, where the latter improves on the performance of the former by allowing the partitions to be optimized. By partitioning the operation region, the problem is solved offline, and partition trees are constructed which can be used as a `look-up table' to determine the optimal input depending on revealed information at run time.
Date Created
2022
Agent

Studies on Origami-Inspired Metamaterials with Tunable Stiffness

168312-Thumbnail Image.png
Description
Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only

Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges, two objectives were proposed and achieved in this dissertation: first, to design mechanical metamaterials with metamaterials with selective stiffness and collapsibility; second, to design mechanical metamaterials with in-situ tunable stiffness among positive, zero, and negative.In the first part, triangulated cylinder origami was employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. These deployable structures are flexible in the deploy direction so that it can be easily collapsed along the same way as it was deployed. An origami-inspired mechanical metamaterial was designed for on-demand deployability and selective collapsibility: autonomous deployability from the collapsed state and selective collapsibility along two different paths, with low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields unprecedented load bearing capability in the deploy direction while possessing great deployability and collapsibility. The principle in this prospectus can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. In the second part, curved origami patterns were designed to accomplish in situ stiffness manipulation covering positive, zero, and negative stiffness by activating predefined creases on one curved origami pattern. This elegant design enables in situ stiffness switching in lightweight and space-saving applications, as demonstrated through three robotic-related components. Under a uniform load, the curved origami can provide universal gripping, controlled force transmissibility, and multistage stiffness response. This work illustrates an unexplored and unprecedented capability of curved origami, which opens new applications in robotics for this particular family of origami patterns.
Date Created
2021
Agent