Development, Modeling, and Testing of a Compliant Bistable Anguilliform Robot
- Author (aut): Kwan, Anson
- Thesis advisor (ths): Aukes, Daniel
- Committee member: Zhang, Wenlong
- Committee member: Marvi, Hamid
- Publisher (pbl): Arizona State University
Visual odometry (VO) plays a crucial role in determining the position and orientation of an autonomous vehicle as it navigates through its environment. However, the performance of visual odometry can be significantly affected by errors in disparity estimation and LIDAR depth measurements. This thesis investigates the use of LIDAR depth correction and Stereo disparity matching, combined with stronger match filtering, to improve the accuracy and reliability of VO estimations. The study utilizes a dataset consisting of a sequence of image frames, ground truth position data, and a range of feature detection, description, and matching techniques. Results indicate that the proposed approach significantly improves the accuracy of VO estimations, providing a valuable contribution to the development of reliable and safe autonomous navigation systems. The proposed method consists of two main components: (1) an advanced disparity matching algorithm to obtain more accurate and robust disparity estimations, and (2) a LIDAR depth correction module that employs a sensor fusion approach to refine the depth information generated by LIDAR sensors. The LIDAR depth correction module combines data from multiple sensors, including LIDAR, camera, and inertial measurement unit (IMU), to produce a more accurate depth estimation. The performance of the proposed approach is evaluated using real-world datasets and benchmark visual odometry challenges. Results demonstrate that the proposed method significantly improves the accuracy and robustness of visual odometry, leading to better localization and navigation performance for autonomous vehicles. This research contributes to the ongoing development of autonomous vehicle technology by addressing critical challenges in visual odometry and offering a practical solution for more accurate and reliable self-localization
The seamless integration of autonomous vehicles (AVs) into highly interactive and dynamic driving environments requires AVs to safely and effectively communicate with human drivers. Furthermore, the design of motion planning strategies that satisfy safety constraints inherit the challenges involved in implementing a safety-critical and dynamics-aware motion planning algorithm that produces feasible motion trajectories. Driven by the complexities of arriving at such a motion planner, this thesis leverages a motion planning toolkit that utilizes spline parameterization to compute the optimal motion trajectory within a dynamic environment. Our approach is comprised of techniques originating from optimal control, vehicle dynamics, and spline interpolation. To ensure dynamic feasibility of the computed trajectories, we formulate the optimal control problem in relation to the intrinsic state constraints derived from the bicycle state space model. In addition, we apply input constraints to bound the rate of change of the steering angle and acceleration provided to the system. To produce collision-averse trajectories, we enforce extrinsic state constraints extracted from the static and dynamic obstacles in the circumambient environment. We proceed to exploit the mathematical properties of B-splines, such as the Convex Hull Property, and the piecewise composition of polynomial functions. Second, we focus on constructing a highly interactive environment in which the con- figured optimal control problem is deployed. Vehicle interactions are categorized into two distinct cases: Case 1 is representative of a single-agent interaction, whereas Case 2 is representative of a multi-agent interaction. The computed motion trajectories per each case are displayed in simulation.