The Axelrod Model is an agent-based adaptive model. The Axelrod Model shows the eects of a mechanism of convergent social inuence. Do local conver- gences generate global polarization ? Will it be possible for all dierences between individuals in a…
The Axelrod Model is an agent-based adaptive model. The Axelrod Model shows the eects of a mechanism of convergent social inuence. Do local conver- gences generate global polarization ? Will it be possible for all dierences between individuals in a population comprised of neighbors to disappear ? There are many mechanisms to approach this issue ; the Axelrod Model is one of them.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This thesis explores and explains a stochastic model in Evolutionary Game Theory introduced by Dr. Nicolas Lanchier. The model is a continuous-time Markov chain that maps the two-dimensional lattice into the strategy space {1,2}. At every vertex in the grid…
This thesis explores and explains a stochastic model in Evolutionary Game Theory introduced by Dr. Nicolas Lanchier. The model is a continuous-time Markov chain that maps the two-dimensional lattice into the strategy space {1,2}. At every vertex in the grid there is exactly one player whose payoff is determined by its strategy and the strategies of its neighbors. Update times are exponential random variables with parameters equal to the absolute value of the respective cells' payoffs. The model is connected to an ordinary differential equation known as the replicator equation. This differential equation is analyzed to find its fixed points and stability. Then, by simulating the model using Java code and observing the change in dynamics which result from varying the parameters of the payoff matrix, the stochastic model's phase diagram is compared to the replicator equation's phase diagram to see what effect local interactions and stochastic update times have on the evolutionary stability of strategies. It is revealed that in the stochastic model altruistic strategies can be evolutionarily stable, and selfish strategies are only evolutionarily stable if they are more selfish than their opposing strategy. This contrasts with the replicator equation where selfishness is always evolutionarily stable and altruism never is.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
We model communication among social insects as an interacting particle system in which individuals perform one of two tasks and neighboring sites anti-mimic one another. Parameters of our model are a probability of defection 2 (0; 1) and relative cost…
We model communication among social insects as an interacting particle system in which individuals perform one of two tasks and neighboring sites anti-mimic one another. Parameters of our model are a probability of defection 2 (0; 1) and relative cost ci > 0 to the individual performing task i. We examine this process on complete graphs, bipartite graphs, and the integers, answering questions about the relationship between communication, defection rates and the division of labor. Assuming the division of labor is ideal when exactly half of the colony is performing each task, we nd that on some bipartite graphs and the integers it can eventually be made arbitrarily close to optimal if defection rates are sufficiently small. On complete graphs the fraction of individuals performing each task is also closest to one half when there is no defection, but is bounded by a constant dependent on the relative costs of each task.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The decline of honeybee colonies around the world has been linked to the presence of the Varroa destructor, a mite acting as a virus vector for the Acute Bee Paralysis Virus. We developed a model of the infestation of the…
The decline of honeybee colonies around the world has been linked to the presence of the Varroa destructor, a mite acting as a virus vector for the Acute Bee Paralysis Virus. We developed a model of the infestation of the Apis melliifera honeybee colony by the Acute Bee Paralysis Virus, which is transmitted by the parasitic Varroa destructor. This is a four dimensional system of nonlinear ODE's for healthy and virus infected bees, total number of mites in the colony and number of mites that carry the virus. The Acute Bee Paralysis Virus can be transmitted between infected and uninfected bees, infected mite to adult bee, infected bee to phoretic mite, and reproductive mites to bee brood. This model is studied with analytical techniques deriving the conditions under which the bee colony can fight off an Acute Bee Paralysis Virus epidemic.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This dissertation will look at large scale collaboration through the lens of online communities to answer questions about what makes a collaboration persist. Results address how collaborations attract contributions, behaviors that could give rise to patterns seen in the data,…
This dissertation will look at large scale collaboration through the lens of online communities to answer questions about what makes a collaboration persist. Results address how collaborations attract contributions, behaviors that could give rise to patterns seen in the data, and the properties of collaborations that drive those behaviors.
It is understood that collaborations, online and otherwise, must retain users to remain productive. However, before users can be retained they must be recruited. In the first project, a few necessary properties of the ``attraction'' function are identified by constraining the dynamics of an ODE (Ordinary Differential Equation) model. Additionally, more than 100 communities of the Stack Exchange networks are parameterized and their distributions reported.
Collaborations do not exist in a vacuum, they compete with and share users with other collaborations. To address this, the second project focuses on an agent-based model (ABM) of a community of online collaborations using a mechanistic approach. The ABM is compared to data obtained from the Stack Exchange network and produces similar distributional patterns.
The third project is a thorough sensitivity analysis of the model created in the second project. A variance based sensitivity analysis is performed to evaluate the relative importance of 21 parameters of the model. Results indicate that population parameters impact many outcome metrics, though even those parameters that tend towards a low impact can be crucial for some outcomes.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Modern biology and epidemiology have become more and more driven by the need of mathematical models and theory to elucidate general phenomena arising from the complexity of interactions on the numerous spatial, temporal, and hierarchical scales at which biological systems…
Modern biology and epidemiology have become more and more driven by the need of mathematical models and theory to elucidate general phenomena arising from the complexity of interactions on the numerous spatial, temporal, and hierarchical scales at which biological systems operate and diseases spread. Epidemic modeling and study of disease spread such as gonorrhea, HIV/AIDS, BSE, foot and mouth disease, measles, and rubella have had an impact on public health policy around the world which includes the United Kingdom, The Netherlands, Canada, and the United States. A wide variety of modeling approaches are involved in building up suitable models. Ordinary differential equation models, partial differential equation models, delay differential equation models, stochastic differential equation models, difference equation models, and nonautonomous models are examples of modeling approaches that are useful and capable of providing applicable strategies for the coexistence and conservation of endangered species, to prevent the overexploitation of natural resources, to control disease’s outbreak, and to make optimal dosing polices for the drug administration, and so forth.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A key factor in the success of social animals is their organization of work. Mathematical models have been instrumental in unraveling how simple, individual-based rules can generate collective patterns via self-organization. However, existing models offer limited insights into how these…
A key factor in the success of social animals is their organization of work. Mathematical models have been instrumental in unraveling how simple, individual-based rules can generate collective patterns via self-organization. However, existing models offer limited insights into how these patterns are shaped by behavioral differences within groups, in part because they focus on analyzing specific rules rather than general mechanisms that can explain behavior at the individual-level. My work argues for a more principled approach that focuses on the question of how individuals make decisions in costly environments.
In Chapters 2 and 3, I demonstrate how this approach provides novel insights into factors that shape the flexibility and robustness of task organization in harvester ant colonies (Pogonomyrmex barbatus). My results show that the degree to which colonies can respond to work in fluctuating environments depends on how individuals weigh the costs of activity and update their behavior in response to social information. In Chapter 4, I introduce a mathematical framework to study the emergence of collective organization in heterogenous groups. My approach, which is based on the theory of multi-agent systems, focuses on myopic agents whose behavior emerges out of an independent valuation of alternative choices in a given work environment. The product of this dynamic is an equilibrium organization in which agents perform different tasks (or abstain from work) with an analytically defined set of threshold probabilities. The framework is minimally developed, but can be extended to include other factors known to affect task decisions including individual experience and social facilitation. This research contributes a novel approach to developing (and analyzing) models of task organization that can be applied in a broader range of contexts where animals cooperate.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination…
Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination of oncolytic virotherapy and immunotherapy is explored through deterministic systems of nonlinear differential equations, constructed to match experimental data for murine melanoma. Mathematical analysis was done in order to gain insight on the relationship between cancer, viruses and immune response. One extension of the model focuses on clinical needs, with the underlying goal to seek optimal treatment regimens; for both frequency and dose quantity. The models in this work were first used to estimate parameters from preclinical experimental data, to identify biologically realistic parameter values. Insight gained from the mathematical analysis in the first model, allowed for numerical analysis to explore optimal treatment regimens of combination oncolytic virotherapy and dendritic vaccinations. Permutations accounting for treatment scheduled were done to find regimens that reduce tumor size. Observations from the produced data lead to in silico exploration of immune-viral interactions. Results suggest under optimal settings, combination treatment works better than monotherapy of either type. The most optimal result suggests treatment over a longer period of time, with fractioned doses, while reducing the total dendritic vaccination quantity, and maintaining the maximum virotherapy used in the experimental work.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer…
This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of related past work is given along with a summary of the dynamics in the mean-field model, which is described by the replicator equation. Then the dynamics of the interacting particle system is considered, first when individuals are updated according to the best-response update process and then the death-birth update process. Several interesting results are derived, and the differences between the interacting particle system model and the replicator dynamics are emphasized. The terms selfish and altruistic are defined according to a certain ordering of payoff parameters. In these terms, the replicator dynamics are simple: coexistence occurs if both strategies are altruistic; the selfish strategy wins if one strategy is selfish and the other is altruistic; and there is bistability if both strategies are selfish. Under the best-response update process, it is shown that there is no bistability region. Instead, in the presence of at least one selfish strategy, the most selfish strategy wins, while there is still coexistence if both strategies are altruistic. Under the death-birth update process, it is shown that regardless of the range of interactions and the dimension, regions of coexistence and bistability are both reduced. Additionally, coexistence occurs in some parameter region for large enough interaction ranges. Finally, in contrast with the replicator equation and the best-response update process, cooperators can win in the prisoner's dilemma for the death-birth process in one-dimensional nearest-neighbor interactions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)