Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization…
Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This dissertation will look at large scale collaboration through the lens of online communities to answer questions about what makes a collaboration persist. Results address how collaborations attract contributions, behaviors that could give rise to patterns seen in the data,…
This dissertation will look at large scale collaboration through the lens of online communities to answer questions about what makes a collaboration persist. Results address how collaborations attract contributions, behaviors that could give rise to patterns seen in the data, and the properties of collaborations that drive those behaviors.
It is understood that collaborations, online and otherwise, must retain users to remain productive. However, before users can be retained they must be recruited. In the first project, a few necessary properties of the ``attraction'' function are identified by constraining the dynamics of an ODE (Ordinary Differential Equation) model. Additionally, more than 100 communities of the Stack Exchange networks are parameterized and their distributions reported.
Collaborations do not exist in a vacuum, they compete with and share users with other collaborations. To address this, the second project focuses on an agent-based model (ABM) of a community of online collaborations using a mechanistic approach. The ABM is compared to data obtained from the Stack Exchange network and produces similar distributional patterns.
The third project is a thorough sensitivity analysis of the model created in the second project. A variance based sensitivity analysis is performed to evaluate the relative importance of 21 parameters of the model. Results indicate that population parameters impact many outcome metrics, though even those parameters that tend towards a low impact can be crucial for some outcomes.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on…
Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment, we use a utilitarian formulation of agent decision making to explore conditions that support the emergence of cooperative behavior. Our results indicate that cooperation levels are significantly lower for larger groups in contrast to the original pure strategy model. Here, defection behavior not only diminishes the public good, but also affects the expectations of group members leading conditional co-operators to change their strategies. Hence defection has a more damaging effect when decisions are based on expectations and not only pure strategies.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)