Cold, Dry, and Alone: Quantifying Hibernation Traits in Dryland Bats of the Southwest

190912-Thumbnail Image.png
Description
As white-nose syndrome (WNS) spreads across North America, generating baseline data on bats hibernating outside of the affected area is critical. To illustrate, despite the imminent arrival of Pseudogymnoascus destructans (Pd) to Arizona (AZ), little is known about bat hibernation

As white-nose syndrome (WNS) spreads across North America, generating baseline data on bats hibernating outside of the affected area is critical. To illustrate, despite the imminent arrival of Pseudogymnoascus destructans (Pd) to Arizona (AZ), little is known about bat hibernation in the Southwest. With the current amount of information, if Pd spreads throughout the state, detection of cases would be limited, and severity of disease and magnitude of mortality impossible to accurately estimate. Thus, my study monitored hibernating bats in AZ to increase knowledge and investigate potential WNS impacts on these populations. Utilizing passive acoustic monitoring, internal cave surveys, environmental monitoring, and thermal imaging, my study quantified microclimate preferences, hibernation lengths, hibernation behaviors, population dynamics, and species compositions of bats hibernating in three north-central AZ caves. Hibernation lasted between 104 and 162 days, from late October through mid- March, during which time bats (primarily Corynorhinus townsendii and Myotis species) roosted at locations with an average of 4.7oC (range = -0.2oC – 12.1oC), 59.6% relative humidity (range = 39.6% - 75.9%), and 0.4 kPa water vapor pressure deficit (range = 0.2 kPa – 0.8 kPa). A maximum of 40 individuals were observed in any hibernacula and clustering behavior occurred in only 4.1% of torpid bats. Bats selected cold and dry roost sites within caves. Results suggest Pd could proliferate on some bats hibernating in colder areas of AZ hibernacula, yet the range of observed roost humidities was lower than optimal for Pd growth. Hibernation length in north-central AZ is longer than predicted for Myotis species at similar latitudes and may be long enough to pose over- winter survival risks if WNS emerges in AZ populations. Yet, a natural tendency for mid-winter activity, which I observed by multiple species, may allow for foraging opportunities and water replenishment, and therefore promote survival in bats utilizing these arid and cold habitats in winter. Additionally, the relatively solitary behaviors I observed, including virtually no clustering activity and a maximum of 40 bats per hibernacula, may keep rates of Pd transmission low in these Southwest bat populations.
Date Created
2023
Agent

Expressing Equilibrium

165244-Thumbnail Image.png
Description
The study of broad therapeutic advantages of dance is a growing field of interdisciplinary study. Yet, direct health benefits of dance from a molecular standpoint are still largely unknown. Literature review of dance performance displays in birds as well as

The study of broad therapeutic advantages of dance is a growing field of interdisciplinary study. Yet, direct health benefits of dance from a molecular standpoint are still largely unknown. Literature review of dance performance displays in birds as well as other creatures and use of creative tools to analyze the diverse, lifelong experiences of dancers helped shed some light on the subject. Although dance experience exposes harms tied to the social constraints of how the form is experiences buried under joyful takeaways of dance, research supports overall health benefits from moderate amounts of dance maintained in perfect equilibrium.
Date Created
2022-05
Agent

Quantifying the Preference of Corynorhinus townsendii to Hibernate in Highly Ventilated Areas in Arizona Caves

165132-Thumbnail Image.png
Description

Corynorhinus townsendii, a bat species residing in north-central Arizona, has historically been observed hibernating in highly ventilated areas within caves and abandoned mines, but there is little to no specific data regarding this tendency. Understanding how air movement may influence

Corynorhinus townsendii, a bat species residing in north-central Arizona, has historically been observed hibernating in highly ventilated areas within caves and abandoned mines, but there is little to no specific data regarding this tendency. Understanding how air movement may influence hibernacula selection is critical in bettering conservation efforts for Arizona bats, especially with white-nose syndrome continuing to devastate bat species populations throughout the United States. My study aimed to begin filling in this knowledge gap. I measured wind speed in three known Arizona hibernacula during the winter hibernation season and combined this data with the locations of bats observed throughout each of the three survey locations. I modeled our findings using a generalized linear model, which confirmed that wind speed is indeed a predictor of C. townsendii roost selection.

Date Created
2022-05
Agent

Establishing a foundation for investigating the role of nutrition on immunity in wildlife

131257-Thumbnail Image.png
Description
This review examines existing research on relationships between two established disciplines, nutrition and immunology, with a specific focus on the complement system in vertebrate organisms and how its functioning is affected by nutritional status. The available studies assessed the effects

This review examines existing research on relationships between two established disciplines, nutrition and immunology, with a specific focus on the complement system in vertebrate organisms and how its functioning is affected by nutritional status. The available studies assessed the effects of certain vitamins, lipids, carbohydrates, proteins, and overall body condition, measured as body mass index (BMI), on the three complement activation pathways (classical, lectin, and alternative) and their components (C1q, C1s, C3, C4, C5, C6, C8, C9, and C3 proactivator) in blood plasma. Across studies, an increased abundance and/or activity of complement components in plasma was observed in rodents and humans after intake of vitamin A, vitamin C, lipids, and proteins. Higher relative activity was also observed in bats with high body mass index (BMI), a measure of general body condition. Overall, results indicate that nutritional status has a pronounced effect on the complement system in species studied. However, only few studies have investigated effects of nutrition on complement in non-model organisms, such as wildlife, indicating major gaps in knowledge related to taxa that more likely experience nutrient limitations, e.g. through seasonal variation in resources, droughts, etc. as compared with model organisms used under laboratory settings. Understanding potential relationships between nutrition and immunity in a broader suite of species is crucial, nonetheless, due to the number of emerging wildlife diseases that are spreading at an alarming rate. Therefore, I critiqued the available evidence to help predict how wildlife hosts will resist or tolerate diseases, such as white-nose syndrome, sylvatic plague, and avian influenza, based on the nutritional status of an individual host. I also considered methodological approaches and assessed their potential for use in wildlife. The studies in this review used different methods to measure complement protein activity, such as hemolytic and functional assays. Future studies can also take advantage of newer high-throughput methods, such as proteomics combined with functional assays. This can lead to a more comprehensive understanding of the efficacy of complement proteins to neutralize invading pathogens under different host nutritional states. My investigation into relationships between nutrition and complement will also inform similar investigations to uncover effects of nutrition on other aspects of immunity, such as antimicrobial peptides. Overall, my assessment concludes that complement is a good candidate for investigating the role of nutrition on immunity in wildlife because it is sensitive to changes in some nutritional components, particularly vitamins, lipids, and proteins.
Date Created
2020-05
Agent

The Art of Healing

132399-Thumbnail Image.png
Description
Art is an ancient, personal, and cultural phenomenon used to convey human creativity and emotion. Dating back as early as 40,000 years in Indonesian cave paintings, this medium has been used to record stories, histories, and shape cultural opinion throughout

Art is an ancient, personal, and cultural phenomenon used to convey human creativity and emotion. Dating back as early as 40,000 years in Indonesian cave paintings, this medium has been used to record stories, histories, and shape cultural opinion throughout the history of mankind. While we have witnessed the rise and fall of types of art in popular culture and traditions, the core of art remains the same, which is to express the imagery within the human mind into a tangible form. As such, this allows for the candid acknowledgement and projection of an individual’s state of being into a productive, expressive skill which reaps therapeutic benefits.
Date Created
2019-05
Agent

Immunological Responses to the White-Nose Syndrome Pathogen and their Potential Use as Control

132483-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed in the field, except a few being tested on a limited scale. Bats have lowered immune function and response during hibernation, which may increase susceptibility to infection during the winter months. Antimicrobial peptides (AMPs) are a crucial component of the innate immune system and serve as barriers against infection. AMPs are constitutively expressed on skin and facilitate wound healing, stimulate other immune responses, and may also stay active on bat skin during hibernation. AMPs are expressed by all tissues, have direct killing abilities against microbes, and are a potential treatment for bats infected with Pd. In this investigation, the fungicidal activity of several readily available commercial AMPs were compared, and killing assay protocols previously investigated by Frasier and Lake were replicated to establish a control trial for use in future killing assays. Another aim of this investigation was to synthesize a bat-derived AMP for use in the killing assay. Sequences of bat-derived AMPs have been identified in bat skin samples obtained from a large geographic sampling of susceptible and resistant species. Contact was made with GenScript Inc., the company from which commercially available AMPs were purchased, to determine the characteristics of peptide sequences needed to synthesize an AMP for lab use. Based on recommendations from GenScript Inc., peptide sequences need to have a hydrophobicity of less than 50% and a sequence length of less than 50 amino acids. These criteria serve as a potential barrier because none of the known bat-derived sequences analyzed satisfy both of these requirements. The final aim of this study was to generate a conceptual model of the immune response molecules activated when bats are exposed to a fungal pathogen such as Pd. Overall, this work investigated sources of variability between trials of the killing assay, analyzed known bat-derived peptide sequences, and generated a conceptual model that will serve as a guideline for identification of immune response molecules on the skin of bats in future proteomics work.
Date Created
2019-05
Agent

Applying Nutritional Education within the Primary Care Clinical Setting for the Prevention and Treatment of Chronic Cardiovascular Diseases

133090-Thumbnail Image.png
Description
Nutrition has been around for as long as human beings have resided on the planet, giving it one of the most impactful roles in history, particularly in medicine. Certain herbs or dietary restrictions could help individuals recover from illnesses—this form

Nutrition has been around for as long as human beings have resided on the planet, giving it one of the most impactful roles in history, particularly in medicine. Certain herbs or dietary restrictions could help individuals recover from illnesses—this form of healing has been passed down generations, which medical providers from all over the world take advantage of. Before the era of antibiotics and pharmaceutical companies, food was the medicine used to treat. As civilization has flourished and become progressive, it seems that certain qualities of the past have been forgotten, such as the power of diet. Medical providers like to push patients towards pharmaceutical intervention because of the financial profit that this method entails, which has been shown to backfire. These interventions are not solving the true problem, but only applying a short-term solution. Dietary restrictions as well as the increase in heart-healthy foods can entirely reverse these conditions in order to avoid the fatal effects they may have. With the increase in nutritional education amongst the population via medical providers, specifically primary care providers, patients are able to reverse the symptoms of effects of chronic cardiovascular disease amongst others.
Date Created
2018-12
Agent

Digging Deeper into Vitamin Supplements: A, B12, and Multivitamins

133305-Thumbnail Image.png
Description
Vitamin supplements have beneficial and adverse effects depending on the dosage given and the age and sex of the recipient. Vitamin supplements have been extremely profitable in the health industry, but there is limited scientific data supporting vitamin supplement benefits.

Vitamin supplements have beneficial and adverse effects depending on the dosage given and the age and sex of the recipient. Vitamin supplements have been extremely profitable in the health industry, but there is limited scientific data supporting vitamin supplement benefits. Many studies over the last decade have shown that vitamin supplements provide few health benefits and can lead to adverse effects, such as abnormal bone growth, birth defects, or an increased risk of cancer. Some researchers state that people with a specific vitamin deficiency should take vitamin supplements because the supplement can alleviate this deficiency. Many healthy people take vitamin supplements to prevent disease or have better health, but some researchers argue this is a misconception. Most health organizations indicate that consuming vitamins should be through diet, not supplements. The value of dietary supplements, most of which are consumed in developed countries, has been a controversial topic, because the beneficial effects of taking vitamin supplements is hotly contested. Many experts in the field of nutritional physiology suggest that Americans adequately receive enough vitamins in their diet and do not need to take vitamin supplements. Researchers at John Hopkins announced that the United States should stop spending money on vitamin supplements. Their research has found no benefits to taking vitamin supplements, because most people in industrialized areas are well-nourished. In this study, I have gathered that vitamin supplements are not beneficial when one has a sufficiently nutrient-rich diet; whereas, one who has a vitamin deficient diet can benefit from taking vitamin supplements. Furthermore, I have gathered that people older than 65-years-old should take vitamin B12 because vitamin B12 levels decrease with age. There is not enough evidence to prove or disprove that vitamin supplements are generally beneficial. In fact, I gathered that vitamin supplements may even be harmful. I propose that further studies should be conducted to discover the truth about the possible benefits of vitamin supplementation for healthy individuals and among people with different health conditions, activity levels, and nutrient requirements.
Date Created
2018-05
Agent

Investigating Antimicrobial Controls for Bat White-Nose Syndrome

133500-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
Date Created
2018-05
Agent

Investigating Antimicrobial Controls for Bat White-Nose Syndrome

133503-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
Date Created
2018-05
Agent