Material Failure Simulation with Random Microstructure using Lattice Particle Method and Neural Network

161637-Thumbnail Image.png
Description
Extensive efforts have been devoted to understanding material failure in the last several decades. A suitable numerical method and specific failure criteria are required for failure simulation. The finite element method (FEM) is the most widely used approach for material

Extensive efforts have been devoted to understanding material failure in the last several decades. A suitable numerical method and specific failure criteria are required for failure simulation. The finite element method (FEM) is the most widely used approach for material mechanical modelling. Since FEM is based on partial differential equations, it is hard to solve problems involving spatial discontinuities, such as fracture and material interface. Due to their intrinsic characteristics of integro-differential governing equations, discontinuous approaches are more suitable for problems involving spatial discontinuities, such as lattice spring method, discrete element method, and peridynamics. A recently proposed lattice particle method is shown to have no restriction of Poisson’s ratio, which is very common in discontinuous methods. In this study, the lattice particle method is adopted to study failure problems. In addition of numerical method, failure criterion is essential for failure simulations. In this study, multiaxial fatigue failure is investigated and then applied to the adopted method. Another critical issue of failure simulation is that the simulation process is time-consuming. To reduce computational cost, the lattice particle method can be partly replaced by neural network model.First, the development of a nonlocal maximum distortion energy criterion in the framework of a Lattice Particle Model (LPM) is presented for modeling of elastoplastic materials. The basic idea is to decompose the energy of a discrete material point into dilatational and distortional components, and plastic yielding of bonds associated with this material point is assumed to occur only when the distortional component reaches a critical value. Then, two multiaxial fatigue models are proposed for random loading and biaxial tension-tension loading, respectively. Following this, fatigue cracking in homogeneous and composite materials is studied using the lattice particle method and the proposed multiaxial fatigue model. Bi-phase material fatigue crack simulation is performed. Next, an integration of an efficient deep learning model and the lattice particle method is presented to predict fracture pattern for arbitrary microstructure and loading conditions. With this integration, computational accuracy and efficiency are both considered. Finally, some conclusion and discussion based on this study are drawn.
Date Created
2021
Agent

High Cycle Fatigue Behavior of Additively Manufactured Thin Wall Inconel 718

161596-Thumbnail Image.png
Description
Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue

Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing (HIP) as conventional heat treatment. This study aims at investigating the dependence of High Cycle Fatigue (HCF) behavior on wall thickness and Hot Isostatic Pressing (HIP) for as-built Additively Manufactured Thin Wall Inconel 718 alloys. To address this aim, high cycle fatigue tests were performed on specimens of seven different thicknesses (0.3mm,0.35mm, 0.5mm, 0.75mm, 1mm, 1.5mm, and 2mm) using a Servohydraulic FatigueTesting Machine. Only half of the specimen underwent HIP, creating data for bothHIP and No-HIP specimens. Upon analyzing the collected data, it was noticed that the specimens that underwent HIP had similar fatigue behavior to that of sheet metal specimens. In addition, it was also noticed that the presence of Porosity in No-HIP specimens makes them more sensitive to changes in stress. A clear decrease in fatigue strength with the decrease in thickness was observed for all specimens.
Date Created
2021
Agent

Energy-Based Fatigue Life Prediction Under Random Uniaxial and Multiaxial Loadings

161363-Thumbnail Image.png
Description
Two fatigue life prediction methods using the energy-based approach have been proposed. A number of approaches have been developed in the past five decades. This study reviews some common models and discusses the model that is most suitable for

Two fatigue life prediction methods using the energy-based approach have been proposed. A number of approaches have been developed in the past five decades. This study reviews some common models and discusses the model that is most suitable for each different condition, no matter whether the model is designed to solve uniaxial, multiaxial, or biaxial loading paths in fatigue prediction. In addition, different loading cases such as various loading and constant loading are also discussed. These models are suitable for one or two conditions in fatigue prediction. While most of the existing models can only solve single cases, the proposed new energy-based approach not only can deal with different loading paths but is applicable for various loading cases. The first energy-based model using the linear cumulative rule is developed to calculate random loading cases. The method is developed by combining Miner’s rule and the rainflow-counting algorithm. For the second energy-based method, I propose an alternative method and develop an approach to avert the rainflow-counting algorithm. Specifically, I propose to use an energy-based model by directly using the time integration concept. In this study, first, the equivalent energy concept that can transform three-dimensional loading into an equivalent loading will be discussed. Second, the new damage propagation method modified by fatigue crack growth will be introduced to deal with cycle-based fatigue prediction. Third, the time-based concept will be implemented to determine fatigue damage under every cycle in the random loading case. The formulation will also be explained in detail. Through this new model, the fatigue life can be calculated properly in different loading cases. In addition, the proposed model is verified with experimental datasets from several published studies. The data include both uniaxial and multiaxial loading paths under constant loading and random loading cases. Finally, the discussion and conclusion based on the results, are included. Additional loading cases such as the spectrum including both elastic and plastic regions will be explored in future research.
Date Created
2021
Agent

Novel Hierarchical N-point Polytope Functions for Quantifying, Modeling and Reconstructing Complex Heterogeneous Materials

161328-Thumbnail Image.png
Description
How to effectively and accurately describe, character and quantify the microstructure of the heterogeneous material and its 4D evolution process with time suffered from external stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its

How to effectively and accurately describe, character and quantify the microstructure of the heterogeneous material and its 4D evolution process with time suffered from external stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its performance prediction, processing, optimization and design. The goal of this research is to overcome these challenges by developing a series of novel hierarchical statistical microstructure descriptors called “n-point polytope functions” which is as known as Pn functions to quantify heterogeneous material’s microstructure and creating Pn functions related quantification methods which are Omega Metric and Differential Omega Metric to analyze its 4D processing.In this dissertation, a series of powerful programming tools are used to demonstrate that Pn functions can be used up to n=8 for chaotically scattered images which can hardly be distinguished by our naked eyes in chapter 3 to find or compare the potential configuration feature of structure such as symmetry or polygon geometry relation between the different targets when target’s multi-modal imaging is provided. These n-point statistic results calculated from Pn functions for features of interest in the microstructure can efficiently decompose the structural hidden features into a set of “polytope basis” to provide a concise, explainable, expressive, universal and efficient quantifying manner. In Chapter 4, the Pn functions can also be incorporated into material reconstruction algorithms readily for fast virtualizing 3D microstructure regeneration and also allowing instant material property prediction via analytical structure-property mappings for material design. In Chapter 5, Omega Metric and Differential Omega Metric are further created and used to provide a time-dependent reduced-dimension metric to analyze the 4D evaluation processing instead of using Pn functions directly because these 2 simplified methods can provide undistorted results to be easily compared. The real case of vapor-deposition alloy films analysis are implemented in this dissertation to demonstrate that One can use these methods to predict or optimize the design for 4D evolution of heterogeneous material. The advantages of the all quantification methods in this dissertation can let us economically and efficiently quantify, design, predict the microstructure and 4D evolution of the heterogeneous material in various fields.
Date Created
2021
Agent

Micro- and Macro-Scale Characterization of Fatigue Damage Behavior in Metallic Materials Under Constant and Variable Amplitude Multiaxial Loading

161310-Thumbnail Image.png
Description
Engineering materials and structures undergo a wide variety of multiaxial fatigue loading conditions during their service life. Some of the most complex multiaxial loading scenarios include proportional/non-proportional loading, mix-mode loading, overload/underload, etc. Such loadings are often experienced in many critical

Engineering materials and structures undergo a wide variety of multiaxial fatigue loading conditions during their service life. Some of the most complex multiaxial loading scenarios include proportional/non-proportional loading, mix-mode loading, overload/underload, etc. Such loadings are often experienced in many critical applications including aircraft, rotorcraft, and wind turbines. Any accidental failure of these structures during their service life can lead to catastrophic damage to life, property, and environment. All fatigue failure begins with the nucleation of a small crack, followed by crack growth, and ultimately the occurrence of final failure; however, the mechanisms governing the crack nucleation and the crack propagation behavior depend on the nature of fatigue loading and microstructure of the material. In general, ductile materials witness multiple nucleation sites leading to its failure; however, high strength material fails from the nucleation of a single dominant crack. Crack propagation, on the other hand, is governed by various competing mechanisms, which can act either ahead of the crack tip or in the wake region of the crack. Depending upon the magnitude of load, overload/underload, mode-mixity, and microstructure, dominant governing mechanisms may include: crack tip blunting; crack deflection, branching and secondary cracking; strain hardening; residual compressive stresses; plasticity-induced closure, etc. Therefore, it is essential to investigate the mechanisms governing fatigue failure of structural components under such complex multiaxial loading conditions in order to provide a reliable estimation of useful life. The research presented in this dissertation provides the foundation for a comprehensive understanding of fatigue damage in AA 7075 subjected to a range of loading conditions. A series of fatigue tests were conducted on specially designed specimens under different forms of multiaxial loading, which was followed by fracture-surface analysis in order to identify the governing micromechanisms and correlate them with macroscopic fatigue damage behavior. An empirical model was also developed to predict the crack growth rate trend under mode II overloads in an otherwise constant amplitude biaxial loading. The model parameters were calculated using the shape and the size of the plastic zone ahead of the crack tip, and the degree of material hardening within the overload plastic zone. The data obtained from the model showed a good correlation with the experimental values for crack growth rate in the transient region.
Date Created
2021
Agent

Finite Element Method Assisted Analysis of Fatigue and Damage in Low Temperature Sintered Nano-Silver Soldered Joints

161244-Thumbnail Image.png
Description
Special thermal interface materials are required for connecting devices that operate at high temperatures up to 300°C. Because devices used in power electronics, such as GaN, SiC, and other wide bandgap semiconductors, can reach very high temperatures (beyond 250°C), a

Special thermal interface materials are required for connecting devices that operate at high temperatures up to 300°C. Because devices used in power electronics, such as GaN, SiC, and other wide bandgap semiconductors, can reach very high temperatures (beyond 250°C), a high melting point, and high thermal & electrical conductivity are required for the thermal interface material. Traditional solder materials for packaging cannot be used for these applications as they do not meet these requirements. Sintered nano-silver is a good candidate on account of its high thermal and electrical conductivity and very high melting point. The high temperature operating conditions of these devices lead to very high thermomechanical stresses that can adversely affect performance and also lead to failure. A number of these devices are mission critical and, therefore, there is a need for very high reliability. Thus, computational and nondestructive techniques and design methodology are needed to determine, characterize, and design the packages. Actual thermal cycling tests can be very expensive and time consuming. It is difficult to build test vehicles in the lab that are very close to the production level quality and therefore making comparisons or making predictions becomes a very difficult exercise. Virtual testing using a Finite Element Analysis (FEA) technique can serve as a good alternative. In this project, finite element analysis is carried out to help achieve this objective. A baseline linear FEA is performed to determine the nature and magnitude of stresses and strains that occur during the sintering step. A nonlinear coupled thermal and mechanical analysis is conducted for the sintering step to study the behavior more accurately and in greater detail. Damage and fatigue analysis are carried out for multiple thermal cycling conditions. The results are compared with the actual results from a prior study. A process flow chart outlining the FEA modeling process is developed as a template for the future work. A Coffin-Manson type relationship is developed to help determine the accelerated aging conditions and predict life for different service conditions.
Date Created
2020
Agent

Bayesian-Entropy Method for Probabilistic Diagnostics and Prognostics of Engineering Systems

158710-Thumbnail Image.png
Description
Information exists in various forms and a better utilization of the available information can benefit the system awareness and response predictions. The focus of this dissertation is on the fusion of different types of information using Bayesian-Entropy method. The Maximum

Information exists in various forms and a better utilization of the available information can benefit the system awareness and response predictions. The focus of this dissertation is on the fusion of different types of information using Bayesian-Entropy method. The Maximum Entropy method in information theory introduces a unique way of handling information in the form of constraints. The Bayesian-Entropy (BE) principle is proposed to integrate the Bayes’ theorem and Maximum Entropy method to encode extra information. The posterior distribution in Bayesian-Entropy method has a Bayesian part to handle point observation data, and an Entropy part that encodes constraints, such as statistical moment information, range information and general function between variables. The proposed method is then extended to its network format as Bayesian Entropy Network (BEN), which serves as a generalized information fusion tool for diagnostics, prognostics, and surrogate modeling.

The proposed BEN is demonstrated and validated with extensive engineering applications. The BEN method is first demonstrated for diagnostics of gas pipelines and metal/composite plates for damage diagnostics. Both empirical knowledge and physics model are integrated with direct observations to improve the accuracy for diagnostics and to reduce the training samples. Next, the BEN is demonstrated in prognostics and safety assessment in air traffic management system. Various information types, such as human concepts, variable correlation functions, physical constraints, and tendency data, are fused in BEN to enhance the safety assessment and risk prediction in the National Airspace System (NAS). Following this, the BE principle is applied in surrogate modeling. Multiple algorithms are proposed based on different type of information encoding, such as Bayesian-Entropy Linear Regression (BELR), Bayesian-Entropy Semiparametric Gaussian Process (BESGP), and Bayesian-Entropy Gaussian Process (BEGP) are demonstrated with numerical toy problems and practical engineering analysis. The results show that the major benefits are the superior prediction/extrapolation performance and significant reduction of training samples by using additional physics/knowledge as constraints. The proposed BEN offers a systematic and rigorous way to incorporate various information sources. Several major conclusions are drawn based on the proposed study.
Date Created
2020
Agent

Predictive Control of Interpersonal Communication Processes in Civil Infrastructure Systems Operations

158609-Thumbnail Image.png
Description
Interpersonal communications during civil infrastructure systems operation and maintenance (CIS O&M) are processes for CIS O&M participants to exchange critical information. Poor communications that provide misleading information can jeopardize CIS O&M safety and efficiency. Previous studies suggest that communication contexts

Interpersonal communications during civil infrastructure systems operation and maintenance (CIS O&M) are processes for CIS O&M participants to exchange critical information. Poor communications that provide misleading information can jeopardize CIS O&M safety and efficiency. Previous studies suggest that communication contexts and features could be indicators of communication errors and relevant CIS O&M risks. However, challenges remain for reliable prediction of communication errors to ensure CIS O&M safety and efficiency. For example, existing studies lack a systematic summarization of risky contexts and features of communication processes for predicting communication errors. Limited studies examined quantitative methods for incorporating expert opinions as constraints for reliable communication error prediction. How to examine mitigation strategies (e.g., adjustments of communication protocols) for reducing communication-related CIS O&M risks is also challenging. The main reason is the lack of causal analysis about how various factors influence the occurrences and impacts of communication errors so that engineers lack the basis for intervention.

This dissertation presents a method that integrates Bayesian Network (BN) modeling and simulation for communication-related risk prediction and mitigation. The proposed method aims at tackling the three challenges mentioned above for ensuring CIS O&M safety and efficiency. The proposed method contains three parts: 1) Communication Data Collection and Error Detection – designing lab experiments for collecting communication data in CIS O&M workflows and using the collected data for identifying risky communication contexts and features; 2) Communication Error Classification and Prediction – encoding expert knowledge as constraints through BN model updating to improve the accuracy of communication error prediction based on given communication contexts and features, and 3) Communication Risk Mitigation – carrying out simulations to adjust communication protocols for reducing communication-related CIS O&M risks.

This dissertation uses two CIS O&M case studies (air traffic control and NPP outages) to validate the proposed method. The results indicate that the proposed method can 1) identify risky communication contexts and features, 2) predict communication errors and CIS O&M risks, and 3) reduce CIS O&M risks triggered by communication errors. The author envisions that the proposed method will shed light on achieving predictive control of interpersonal communications in dynamic and complex CIS O&M.
Date Created
2020
Agent

Data-driven Approach to Predict the Static and Fatigue Properties of Additively Manufactured Ti-6Al-4V

158581-Thumbnail Image.png
Description
Additive manufacturing (AM) has been extensively investigated in recent years to explore its application in a wide range of engineering functionalities, such as mechanical, acoustic, thermal, and electrical properties. The proposed study focuses on the data-driven approach to predict the

Additive manufacturing (AM) has been extensively investigated in recent years to explore its application in a wide range of engineering functionalities, such as mechanical, acoustic, thermal, and electrical properties. The proposed study focuses on the data-driven approach to predict the mechanical properties of additively manufactured metals, specifically Ti-6Al-4V. Extensive data for Ti-6Al-4V using three different Powder Bed Fusion (PBF) additive manufacturing processes: Selective Laser Melting (SLM), Electron Beam Melting (EBM), and Direct Metal Laser Sintering (DMLS) are collected from the open literature. The data is used to develop models to estimate the mechanical properties of Ti-6Al-4V. For this purpose, two models are developed which relate the fabrication process parameters to the static and fatigue properties of the AM Ti-6Al-4V. To identify the behavior of the relationship between the input and output parameters, each of the models is developed on both linear multi-regression analysis and non-linear Artificial Neural Network (ANN) based on Bayesian regularization. Uncertainties associated with the performance prediction and sensitivity with respect to processing parameters are investigated. Extensive sensitivity studies are performed to identify the important factors for future optimal design. Some conclusions and future work are drawn based on the proposed study with investigated material.
Date Created
2020
Agent

Four Dimensional (4D) Microstructural and Electrochemical Characterization of Dissimilar-metal Corrosion in Naval Structural Joints

158375-Thumbnail Image.png
Description
AA 7XXX alloys are used extensively in aircraft and naval structures due to their excellent strength to weight ratio. These alloys are often exposed to harsh corrosive environments and mechanical stresses that can compromise their reliability in service. They are

AA 7XXX alloys are used extensively in aircraft and naval structures due to their excellent strength to weight ratio. These alloys are often exposed to harsh corrosive environments and mechanical stresses that can compromise their reliability in service. They are also coupled with fasteners that are composed of different materials such as Titanium alloys. Such dissimilar metal contact facilitates galvanic and crevice corrosion, which can further reduce their lifetimes. Despite decades of research in the area, the confluence of mechanical, microstructural, and electrochemical aspects of damage is still unclear. Traditionally, 2D and destructive methods have often been employed to study the corrosion and cracking behavior in these systems which can be severely limiting and lead to inaccurate conclusions. This dissertation is aimed at comprehensively studying the corrosion and cracking behavior of these systems using time-dependent 3D microstructural characterization, as well as correlative microscopy. The microstructural evolution of corrosion in AA 7075 was studied using a combination of potentiodynamic polarization, X-ray Computed Tomography (XCT) and Transmission X-ray Microscopy (TXM). In both experiments, a strong emphasis was placed on studying localized corrosion attack at constituent particles and intergranular corrosion. With an understanding of the alloy’s corrosion behavior, a dissimilar alloy couple comprising AA 7075 / Ti-6Al-4V was then investigated. Ex situ and in situ x-ray microtomography was used extensively to investigate the evolution of pitting corrosion and corrosion fatigue in AA 7075 plates fastened separately with Ti-6Al-4V screws and rivets. The 4D tomography combined with the extensive fractography yielded valuable information pertaining the preferred sites of pit initiation, crack initiation and growth in these complex geometries. The use of correlative microscopy-based methodologies yielded multimodal characterization results that provided a unique and seminal insight on corrosion mechanisms in these materials.
Date Created
2020
Agent