Description
Additive manufacturing (AM) has been extensively investigated in recent years to explore its application in a wide range of engineering functionalities, such as mechanical, acoustic, thermal, and electrical properties. The proposed study focuses on the data-driven approach to predict the mechanical properties of additively manufactured metals, specifically Ti-6Al-4V. Extensive data for Ti-6Al-4V using three different Powder Bed Fusion (PBF) additive manufacturing processes: Selective Laser Melting (SLM), Electron Beam Melting (EBM), and Direct Metal Laser Sintering (DMLS) are collected from the open literature. The data is used to develop models to estimate the mechanical properties of Ti-6Al-4V. For this purpose, two models are developed which relate the fabrication process parameters to the static and fatigue properties of the AM Ti-6Al-4V. To identify the behavior of the relationship between the input and output parameters, each of the models is developed on both linear multi-regression analysis and non-linear Artificial Neural Network (ANN) based on Bayesian regularization. Uncertainties associated with the performance prediction and sensitivity with respect to processing parameters are investigated. Extensive sensitivity studies are performed to identify the important factors for future optimal design. Some conclusions and future work are drawn based on the proposed study with investigated material.
Details
Title
- Data-driven Approach to Predict the Static and Fatigue Properties of Additively Manufactured Ti-6Al-4V
Contributors
- Sharma, Antriksh (Author)
- Liu, Yongming (Thesis advisor)
- Nian, Qiong (Committee member)
- Jiao, Yang (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Subjects
Resource Type
Collections this item is in
Note
- Masters Thesis Mechanical Engineering 2020