Metallization to Silicon Solar Cells: Improving Optothermal Performance of PERC and Developing New Systems for TOPCon and SHJ

168575-Thumbnail Image.png
Description
Metallization of solar cells is a critical process step in the manufacturing of silicon photovoltaics (PV) as it plays a large role in device performance and production cost. Improvements in device performance linked to metallization and reduction in material usage

Metallization of solar cells is a critical process step in the manufacturing of silicon photovoltaics (PV) as it plays a large role in device performance and production cost. Improvements in device performance linked to metallization and reduction in material usage and processing costs will continue to drive next-generation silicon PV technology. Chapter 1 introduces the context for the contributions of this thesis by providing background information on silicon PV cell technology, solar cell device physics and characterization, and metallization performance for common silicon cell structures. Chapter 2 presents a thermal model that links sub-bandgap reflectance, an important metric at the rear metal interface, to outdoor module operating temperature. Chapter 3 implements this model experimentally with aluminum back-surface field (Al-BSF), passivated emitter and rear contact (PERC), and passivated emitter rear totally diffused (PERT) mini-modules, where the PERT cells were modified to include an optimized sub-bandgap reflector stack. The dedicated optical layer was a porous low-refractive index silica nanoparticle film and was deposited between the dielectric passivation and full area metallization. This created an appreciable boost in sub-bandgap reflectance over the PERC and Al-BSF cells, which directly lead to cooler operating temperature of the fielded module. Chapter 4 investigates low-temperature Ag metallization approaches to SiO2/polysilicon passivating contacts (TOPCon architecture). The low-temperature Ag sintering process does not damage TOPCon passivation for structures with 40-nm-thick poly-Si but shows higher contact resistivity than sputtered references. This disparity is investigated and the impact of Ag diffusion processes, microstructure changes, ambient gases, and interfacial chemical reactions are evaluated. Chapter 5 investigates sputtered Al metallization to silicon heterojunction contacts of both polarities. This In-free and Ag-free metallization process can achieve low contact resistivity and no passivation loss when annealed between 150-180 °C. The passivation degradation at higher temperatures was studied with high-resolution microscopy and elemental mapping, where the interdiffusion processes were identified. Lastly, Chapter 6 summarizes the contribution of this work.
Date Created
2022
Agent

Advanced Characterization of Aerogel Films Deposited via Aerosol Impaction-Driven Assembly

158372-Thumbnail Image.png
Description
A new nanoparticle deposition technique, Aerosol Impaction-Driven Assembly (AIDA), was extensively characterized for material structures and properties. Aerogel films can be deposited directly onto a substrate with AIDA without the long aging and drying steps in the sol-gel method. Electron

A new nanoparticle deposition technique, Aerosol Impaction-Driven Assembly (AIDA), was extensively characterized for material structures and properties. Aerogel films can be deposited directly onto a substrate with AIDA without the long aging and drying steps in the sol-gel method. Electron microscopy, pore size analysis, thermal conductivity, and optical measurements show the nanoparticle (NP) films to be similar to typical silica aerogel. Haze of nanoparticle films modeled as scattering sites correlates strongly with pore size distribution. Supporting evidence was obtained from particle sizes and aggregates using electron microscopy and small-angle X-ray scattering. NP films showed interlayers of higher porosity and large aggregates formed by tensile film stress.

To better understand film stress and NP adhesion, chemical bonding analyses were performed for samples annealed up to 900 °C. Analysis revealed that about 50% of the NP surfaces are functionalized by hydroxyl (-OH) groups, providing for hydrogen bonding. Ellipsometric porosimetry was used to further understand the mechanical properties by providing a measure of strain upon capillary pressure from filling pores. Upon annealing to 200 °C, the films lost water resulting in closer bonding of NPs and higher Young’s modulus. Upon further annealing up to 900 °C, the films lost hydroxyl bonds while gaining siloxane bonds, reducing Young’s modulus. The application of ellipsometric porosimetry to hydrophilic coatings brings into question the validity of pore size distribution calculations for materials that hold onto water molecules and result in generally smaller calculated pore sizes.

Doped hydrogenated microcrystalline silicon was grown on crystalline silicon NPs, as a test case of an application for NP films to reduce parasitic absorption in silicon heterojunction solar cells. Parasitic absorption of blue light could be reduced because microcrystalline silicon has a mix of direct and indirect bandgap, giving lower blue absorption than amorphous silicon. Using Ultraviolet Raman spectroscopy, the crystallinity of films as thin as 13 nm was determined rapidly (in 1 minute) and non-destructively. A mono-layer of nanocrystals was applied as seeds for p-doped microcrystalline silicon growth and resulted in higher crystallinity films. Applications of the method could be explored for other nanocrystalline materials.
Date Created
2020
Agent

Light Management for Silicon and Perovskite Tandem Solar Cells

157980-Thumbnail Image.png
Description
The emergence of perovskite and practical efficiency limit to silicon solar cells has opened door for perovskite and silicon based tandems with the possibility to achieve >30% efficiency. However, there are material and optical challenges that have to be overcome

The emergence of perovskite and practical efficiency limit to silicon solar cells has opened door for perovskite and silicon based tandems with the possibility to achieve >30% efficiency. However, there are material and optical challenges that have to be overcome for the success of these tandems. In this work the aim is to understand and improve the light management issues in silicon and perovskite based tandems through comprehensive optical modeling and simulation of current state of the art tandems and by characterizing the optical properties of new top and bottom cell materials. Moreover, to propose practical solutions to mitigate some of the optical losses.

Highest efficiency single-junction silicon and bottom silicon sub-cell in silicon based tandems employ monocrystalline silicon wafer textured with random pyramids. Therefore, the light trapping performance of random pyramids in silicon solar cells is established. An accurate three-dimensional height map of random pyramids is captured and ray-traced to record the angular distribution of light inside the wafer which shows random pyramids trap light as well as Lambertian scatterer.

Second, the problem of front-surface reflectance common to all modules, planar solar cells and to silicon and perovskite based tandems is dealt. A nano-imprint lithography procedure is developed to fabricate polydimethylsiloxane (PDMS) scattering layer carrying random pyramids that effectively reduces the reflectance. Results show it increased the efficiency of planar semi-transparent perovskite solar cell by 10.6% relative.

Next a detailed assessment of light-management in practical two-terminal perovskite/silicon and perovskite/perovskite tandems is performed to quantify reflectance, parasitic and light-trapping losses. For this first a methodology based on spectroscopic ellipsometry is developed to characterize new absorber materials employed in tandems. Characterized materials include wide-bandgap (CH3NH3I3, CsyFA1-yPb(BrxI1-x)3) and low-bandgap (Cs0.05FA0.5MA0.45(Pb0.5Sn0.5)I3) perovskites and wide-bandgap CdTe alloys (CdZnSeTe). Using this information rigorous optical modeling of two-terminal perovskite/silicon and perovskite/perovskite tandems with varying light management schemes is performed. Thus providing a guideline for further development.
Date Created
2019
Agent

Next generation photovoltaic modules: visualizing deflection and analyzing stress

157774-Thumbnail Image.png
Description
Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks

Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks are of detectable size and detrimental to the performance. Several techniques have been explored to access the deflection and stress status on solar cell, but they have disadvantages such as high surface sensitivity.

This dissertation presents a new and non-destructive method for mapping the deflection on encapsulated solar cells using X-ray topography (XRT). This method is based on Bragg diffraction imaging, where only the areas that meet diffraction conditions will present contrast. By taking XRT images of the solar cell at various sample positions and applying an in-house developed algorithm framework, the cell‘s deflection map is obtained. Error analysis has demonstrated that the errors from the experiment and the data processing are below 4.4 and 3.3%.

Von Karman plate theory has been applied to access the stress state of the solar cells. Under the assumptions that the samples experience pure bending and plain stress conditions, the principal stresses are obtained from the cell deflection data. Results from a statistical analysis using a Weibull distribution suggest that 0.1% of the data points can contribute to critical failure. Both the soldering and lamination processes put large amounts of stress on solar cells. Even though glass/glass packaging symmetry is preferred over glass/backsheet, the solar cells inside the glass/glass packaging experience significantly more stress. Through a series of in-situ four-point bending test, the assumptions behind Von Karman theory are validated for cases where the neutral plane is displaced by the tensile and compressive stresses.

The deflection and stress mapping method is applied to two next generation PV concepts named Flex-circuit and PVMirror. The Flex-circuit module concept replaces traditional metal ribbons with Al foils for electrical contact and PVMirror concept utilizes a curved PV module design with a dichroic film for thermal storage and electrical output. The XRT framework proposed in this dissertation successfully characterized the impact of various novel interconnection and packaging solutions.
Date Created
2019
Agent

Nanostructured Approaches to Light Management in Thin Silicon Solar Cells and Silicon-based Tandems

157464-Thumbnail Image.png
Description
Semiconductor nanostructures are promising building blocks for light management in thin silicon solar cells and silicon-based tandems due their tunable optical properties. The present dissertation is organized along three main research areas: (1) characterization and modeling of III-V nanowires as

Semiconductor nanostructures are promising building blocks for light management in thin silicon solar cells and silicon-based tandems due their tunable optical properties. The present dissertation is organized along three main research areas: (1) characterization and modeling of III-V nanowires as active elements of solar cell tandems, (2) modeling of silicon nanopillars for reduced optical losses in ultra-thin silicon solar cells, and (3) characterization and modeling of nanoparticle-based optical coatings for light management.

First, the recombination mechanisms in polytype GaAs nanowires are studied through photoluminescence measurements coupled with rate equation analysis. When photons are absorbed in polytype nanowires, electrons and holes quickly thermalize to the band-edges of the zinc-blende and wurtzite phases, recombining indirectly in space across the type-II offset. Using a rate equation model, different configurations of polytype defects along the nanowire are investigated, which compare well with experiment considering spatially indirect recombination between different polytypes, and defect-related recombination due to twin planes and other defects. The presented analysis is a path towards predicting the performance of nanowire-based solar cells.

Following this topic, the optical mechanisms in silicon nanopillar arrays are investigated using full-wave optical simulations in comparison to measured reflectance data. The simulated electric field energy density profiles are used to elucidate the mechanisms contributing to the reduced front surface reflectance. Strong forward scattering and resonant absorption are observed for shorter- and longer- aspect ratio nanopillars, respectively, with the sub-wavelength periodicity causing additional diffraction. Their potential for light-trapping is investigated using full-wave optical simulation of an ultra-thin nanostructured substrate, where the conventional light-trapping limit is exceeded for near-bandgap wavelengths.

Finally, the correlation between the optical properties of silicon nanoparticle layers to their respective pore size distributions is investigated using optical and structural characterization coupled with full-wave optical simulation. The presence of

scattering is experimentally correlated to wider pore size distributions obtained from nitrogen adsorption measurements. The correlation is validated with optical simulation of random and clustered structures, with the latter approximating experimental. Reduced structural inhomogeneity in low-refractive-index nanoparticle inter-layers at the metal/semiconductor interface improves their performance as back reflectors, while reducing parasitic absorption in the metal.
Date Created
2019
Agent

A Development of Thin Films and Laser Processes for Patterning of Textured Silicon Solar Cells

156427-Thumbnail Image.png
Description
This work explores the application and optimization of laser patterning of dielectrics on textured crystalline silicon for improving the performance of industrial silicon solar cells. Current direct laser patterning processes introduce defects to the surface of the solar cell as

This work explores the application and optimization of laser patterning of dielectrics on textured crystalline silicon for improving the performance of industrial silicon solar cells. Current direct laser patterning processes introduce defects to the surface of the solar cell as a result of the film transparency and the intensity variation of the laser induced by the textured surface. As a means of overcoming these challenges, a co-deposited protective masking film was developed that is directly patterned with laser light at greatly depreciated light intensities that allows for selective chemical etching of the underlying dielectric films without incurring substantial defects to the surface of the device. Initial defects produced by the process are carefully evaluated with electron microscopy techniques and their mechanism for generation is identified and compensated. Further, an analysis of the opening fraction within the laser spot is evaluated –the area of removed film within the laser spot divided by the area of the laser spot– and residue produced by the laser process within the contact opening is studied. Once identified, this non-damaging laser process is a promising alternative to the standard screen print and fire process currently used by industry for metallization of silicon solar cells. Smaller contacts may be made with the laser process that are as of yet unattainable with screen printing, allowing for a decrease in shading losses. Additionally, the use of patterning allows for silver-free metallization and improved conductivity in the contacts, thereby decreasing parasitic losses in the device.
Date Created
2018
Agent

Silicon-Based Tandem Solar Cells with Silicon Heterojunction Bottom Cells

156120-Thumbnail Image.png
Description
Silicon photovoltaics (PV) is approaching its theoretical efficiency limit as a single-junction technology. To break this limit and further lower the PV-generated levelized cost of electricity, it is necessary to engineer a silicon-based “tandem” technology in which a solar cell

Silicon photovoltaics (PV) is approaching its theoretical efficiency limit as a single-junction technology. To break this limit and further lower the PV-generated levelized cost of electricity, it is necessary to engineer a silicon-based “tandem” technology in which a solar cell of another material is stacked on top of silicon to make more efficient use of the full solar spectrum.

This dissertation understands and develops four aspects of silicon-based tandem PV technology. First, a new “spectral efficiency” concept is proposed to understand how tandem cells should be designed and to identify the best tandem partners for silicon cells. Using spectral efficiency, a top-cell-design guide is constructed for silicon-based tandems that sets efficiency targets for top cells with various bandgaps to achieve targeted tandem efficiencies.

Second, silicon heterojunction solar cells are tuned to the near-infrared spectrum to enable world-record perovskite/silicon tandems both in two- and four-terminal configurations. In particular, for the 23.6%-efficient two-terminal tandem, a single-side textured silicon bottom cell is fabricated with a low-refractive-index silicon nanoparticle layer as a rear reflector. This design boosts the current density to 18.5 mA/cm2; this value exceeds that of any other silicon bottom cell and matches that of the top cell.

Third, “PVMirrors” are proposed as a novel tandem architecture to integrate silicon cells with various top cells. A strength of the design is that the PVMirror collects diffuse light as a concentrating technology. With this concept, a gallium-arsenide/silicon PVMirror tandem is demonstrated with an outdoor efficiency of 29.6%, with respect to the global irradiance.

Finally, a simple and versatile analytical model is constructed to evaluate the cost competitiveness of an arbitrary tandem against its sub-cell alternatives. It indicates that tandems will become increasingly attractive in the market, as the ratio of sub-cell module cost to area-related balance-of-system cost—the key metric that will determine the market success or failure of tandems—is decreasing.

As an evolution of silicon technology, silicon-based tandems are the future of PV. They will allow more people to have access to clean energy at ultra-low cost. This thesis defines both the technological and economic landscape of silicon-based tandems, and makes important contributions to this tandem future.
Date Created
2018
Agent

Nozzle Design for Vacuum Aerosol Deposition of Nanostructured Coatings

155770-Thumbnail Image.png
Description
Nanomaterials exhibit unique properties that are substantially different from their bulk counterparts. These unique properties have gained recognition and application for various fields and products including sensors, displays, photovoltaics, and energy storage devices. Aerosol Deposition (AD) is a relatively new

Nanomaterials exhibit unique properties that are substantially different from their bulk counterparts. These unique properties have gained recognition and application for various fields and products including sensors, displays, photovoltaics, and energy storage devices. Aerosol Deposition (AD) is a relatively new method for depositing nanomaterials. AD utilizes a nozzle to accelerate the nanomaterial into a deposition chamber under near-vacuum conditions towards a substrate with which the nanomaterial collides and adheres. Traditional methods for designing nozzles at atmospheric conditions are not well suited for nozzle design for AD methods.

Computational Fluid Dynamics (CFD) software, ANSYS Fluent, is utilized to simulate two-phase flows consisting of a carrier gas (Helium) and silicon nanoparticles. The Cunningham Correction Factor is used to account for non-continuous effects at the relatively low pressures utilized in AD.

The nozzle, referred to herein as a boundary layer compensation (BLC) nozzle, comprises an area-ratio which is larger than traditionally designed nozzles to compensate for the thick boundary layer which forms within the viscosity-affected carrier gas flow. As a result, nanoparticles impact the substrate at velocities up to 300 times faster than the baseline nozzle.
Date Created
2017
Agent

Quantifying carrier selective contacts in solar cells

154720-Thumbnail Image.png
Description
A basic theory and terminology that comprehensively applies to all different types

of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is

A basic theory and terminology that comprehensively applies to all different types

of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is not adequate to intuitively describe the characteristics of novel contacts. This thesis shows that the many desirable characteristics of contacts that are discussed in the literature—carrier selectivity, passivation, and low majority carrier conductance, key among them—originate from the resistance to electrons and holes in the contact. These principles are applied to describe a few popular contact technologies in order to pave the path to envisioning novel contacts. Metrics for contact performance is introduced to quantify each of the above characteristics using the two carrier resistances. The the validity of the proposed metrics is explored using extensive PC-1D simulations.
Date Created
2016
Agent

Artificial phototropism based on a photo-thermo-responsive hydrogel

154671-Thumbnail Image.png
Description
Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun

Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle.

Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.
Date Created
2016
Agent