Description
Silicon photovoltaics (PV) is approaching its theoretical efficiency limit as a single-junction technology. To break this limit and further lower the PV-generated levelized cost of electricity, it is necessary to engineer a silicon-based “tandem” technology in which a solar cell of another material is stacked on top of silicon to make more efficient use of the full solar spectrum.
This dissertation understands and develops four aspects of silicon-based tandem PV technology. First, a new “spectral efficiency” concept is proposed to understand how tandem cells should be designed and to identify the best tandem partners for silicon cells. Using spectral efficiency, a top-cell-design guide is constructed for silicon-based tandems that sets efficiency targets for top cells with various bandgaps to achieve targeted tandem efficiencies.
Second, silicon heterojunction solar cells are tuned to the near-infrared spectrum to enable world-record perovskite/silicon tandems both in two- and four-terminal configurations. In particular, for the 23.6%-efficient two-terminal tandem, a single-side textured silicon bottom cell is fabricated with a low-refractive-index silicon nanoparticle layer as a rear reflector. This design boosts the current density to 18.5 mA/cm2; this value exceeds that of any other silicon bottom cell and matches that of the top cell.
Third, “PVMirrors” are proposed as a novel tandem architecture to integrate silicon cells with various top cells. A strength of the design is that the PVMirror collects diffuse light as a concentrating technology. With this concept, a gallium-arsenide/silicon PVMirror tandem is demonstrated with an outdoor efficiency of 29.6%, with respect to the global irradiance.
Finally, a simple and versatile analytical model is constructed to evaluate the cost competitiveness of an arbitrary tandem against its sub-cell alternatives. It indicates that tandems will become increasingly attractive in the market, as the ratio of sub-cell module cost to area-related balance-of-system cost—the key metric that will determine the market success or failure of tandems—is decreasing.
As an evolution of silicon technology, silicon-based tandems are the future of PV. They will allow more people to have access to clean energy at ultra-low cost. This thesis defines both the technological and economic landscape of silicon-based tandems, and makes important contributions to this tandem future.
This dissertation understands and develops four aspects of silicon-based tandem PV technology. First, a new “spectral efficiency” concept is proposed to understand how tandem cells should be designed and to identify the best tandem partners for silicon cells. Using spectral efficiency, a top-cell-design guide is constructed for silicon-based tandems that sets efficiency targets for top cells with various bandgaps to achieve targeted tandem efficiencies.
Second, silicon heterojunction solar cells are tuned to the near-infrared spectrum to enable world-record perovskite/silicon tandems both in two- and four-terminal configurations. In particular, for the 23.6%-efficient two-terminal tandem, a single-side textured silicon bottom cell is fabricated with a low-refractive-index silicon nanoparticle layer as a rear reflector. This design boosts the current density to 18.5 mA/cm2; this value exceeds that of any other silicon bottom cell and matches that of the top cell.
Third, “PVMirrors” are proposed as a novel tandem architecture to integrate silicon cells with various top cells. A strength of the design is that the PVMirror collects diffuse light as a concentrating technology. With this concept, a gallium-arsenide/silicon PVMirror tandem is demonstrated with an outdoor efficiency of 29.6%, with respect to the global irradiance.
Finally, a simple and versatile analytical model is constructed to evaluate the cost competitiveness of an arbitrary tandem against its sub-cell alternatives. It indicates that tandems will become increasingly attractive in the market, as the ratio of sub-cell module cost to area-related balance-of-system cost—the key metric that will determine the market success or failure of tandems—is decreasing.
As an evolution of silicon technology, silicon-based tandems are the future of PV. They will allow more people to have access to clean energy at ultra-low cost. This thesis defines both the technological and economic landscape of silicon-based tandems, and makes important contributions to this tandem future.
Details
Title
- Silicon-Based Tandem Solar Cells with Silicon Heterojunction Bottom Cells
Contributors
- Yu, Zhengshan (Author)
- Holman, Zachary C (Thesis advisor)
- Zhang, Yong-Hang (Committee member)
- Bowden, Stuart G (Committee member)
- King, Richard R (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Electrical Engineering 2018