Quantifying carrier selective contacts in solar cells

154720-Thumbnail Image.png
Description
A basic theory and terminology that comprehensively applies to all different types

of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is

A basic theory and terminology that comprehensively applies to all different types

of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is not adequate to intuitively describe the characteristics of novel contacts. This thesis shows that the many desirable characteristics of contacts that are discussed in the literature—carrier selectivity, passivation, and low majority carrier conductance, key among them—originate from the resistance to electrons and holes in the contact. These principles are applied to describe a few popular contact technologies in order to pave the path to envisioning novel contacts. Metrics for contact performance is introduced to quantify each of the above characteristics using the two carrier resistances. The the validity of the proposed metrics is explored using extensive PC-1D simulations.
Date Created
2016
Agent