Description
Computer vision is becoming an essential component of embedded system applications such as smartphones, wearables, autonomous systems and internet-of-things (IoT). These applications are generally deployed into environments with limited energy, memory bandwidth and computational resources. This trend is driving the development of energy-effi cient image processing solutions from sensing to computation. In this thesis, diff erent alternatives are explored to implement energy-efficient computer vision systems. First, I present a fi eld programmable gate array (FPGA) implementation of an adaptive subsampling algorithm for region-of-interest (ROI) -based object tracking. By implementing the computationally intensive sections of this algorithm on an FPGA, I aim to offl oad computing resources from energy-ineffi cient graphics processing units (GPUs) and/or general-purpose central processing units (CPUs). I also present a working system executing this algorithm in near real-time latency implemented on a standalone embedded device. Secondly, I present a neural network-based pipeline to improve the performance of event-based cameras in non-ideal optical conditions. Event-based cameras or dynamic vision sensors (DVS) are bio-inspired sensors that measure logarithmic per-pixel brightness changes in a scene. Their advantages include high dynamic range, low latency and ultra-low power when compared to standard frame-based cameras. Several tasks have been proposed to take advantage of these novel sensors but they rely on perfectly calibrated optical lenses that are in-focus. In this work I propose a methodto reconstruct events captured with an out-of-focus event-camera so they can be fed into an intensity reconstruction task. The network is trained with a dataset generated by simulating defocus blur in sequences from object tracking datasets such as LaSOT and OTB100. I also test the generalization performance of this network in scenes captured with a DAVIS event-based sensor equipped with an out-of-focus lens.
Details
Title
- Computational Imaging for Energy-Efficient Cameras: Adaptive ROI-based Object Tracking and Optically Defocused Event-based Sensing.
Contributors
- Torres Muro, Victor Isaac (Author)
- Jayasuriya, Suren (Thesis advisor)
- Spanias, Andreas (Committee member)
- Seo, Jae-Sun (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2022
- Field of study: Engineering