Reconfigurable High-Performance Computing of Sparse Linear Algebra

193045-Thumbnail Image.png
Description
This thesis presents novel software/hardware co-design methodologies aimed at accelerating sparse linear algebra applications within the realm of High-Performance Computing (HPC). The motivation stems from the limitations of conventional CPU- and GPU-based solutions for sparse linear algebra, which are hindered

This thesis presents novel software/hardware co-design methodologies aimed at accelerating sparse linear algebra applications within the realm of High-Performance Computing (HPC). The motivation stems from the limitations of conventional CPU- and GPU-based solutions for sparse linear algebra, which are hindered by fixed hardware architecture and memory hierarchy, frequent off-chip memory access, and high energy consumption. In response, this work explores the deployment of Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs) to overcome these challenges through their customized nature, offering performance and energy efficiency gains. The scope of the thesis is divided into three main parts: firstly, it introduces a framework that combines an FPGA computational kernel with a novel scheduling algorithm running on a host processor for accelerating the supernodal multifrontal algorithm for sparse Cholesky factorization. This approach minimizes off-chip memory access and on-chip memory requirements by efficiently managing data dependencies and enhancing data locality. Secondly, it presents FSpGEMM, an OpenCL-based framework for accelerating general sparse matrix-matrix multiplication on FPGAs. FSpGEMM exploits a new compressed sparse vector format (CSV) and a custom buffering scheme tailored to Gustavson's algorithm, significantly improving computational performance by optimizing memory access patterns. Additionally, a row reordering technique is utilized to increase the data reuse enabled by the CSV format. Lastly, the thesis proposes an ASIC design for Sparse Tensor Core, which utilizes a Hardware Merge Sorter to increase parallelism in processing units without compromising operating frequency, offering a high-speed solution for sparse linear algebra operations. In summary, the thesis addresses the challenges of implementing sparse linear algebra algorithms on FPGAs and ASICs, such as the complexity of data dependencies and the need for efficient memory management. By proposing solutions that enhance computational performance, reduce energy consumption, and improve the usability of FPGAs and ASICs in HPC infrastructures, this work contributes to computational science, offering a pathway toward more efficient and sustainable computing for complex, data-intensive applications.
Date Created
2024
Agent

Optimizing Memory and Storage Disaggregation for Data-intensive Systems

191751-Thumbnail Image.png
Description
Data-intensive systems such as big data and large machine learning (ML) systems experience serious scalability challenges due to the ever-increasing data demand from ML and analytics applications and the resource fragmentation caused by conventional monolithic server architecture. Memory and storage

Data-intensive systems such as big data and large machine learning (ML) systems experience serious scalability challenges due to the ever-increasing data demand from ML and analytics applications and the resource fragmentation caused by conventional monolithic server architecture. Memory and storage disaggregation emerges as a pivotal technology to address these challenges by decoupling memory and storage resources from individual servers and managing and provisioning them to applications as a shared resource pool. This dissertation investigates several important aspects of memory and storage disaggregation and proposes novel solutions to support data-intensive applications.First, caching is a fundamental way to utilize disaggregated storage, but building a large disaggregated cache is challenging because the commonly-used fix-sized cache block allocation scheme is unable to provide good cache performance with low memory overhead for diverse cloud workloads with vastly different I/O patterns. The dissertation proposes a novel adaptive cache block allocation approach that dynamically adjusts cache block sizes based on changing I/O patterns. This approach significantly improves I/O performance while reducing memory usage, outperforming traditional fixed-size cache systems in diverse cloud workloads. Evaluation shows that it improves read latency by 20% and write latency by 9%. It also reduces the amount of I/O traffic to cloud block storage by up to 74% while achieving up to 41% memory savings with only 2 ms. Second, large ML applications such as large language model (LLM) inference are memory demanding, but to support them using disaggregated memory brings challenges to memory management since disaggregated memory has higher memory access latency compared to local memory. The dissertation proposes latency-aware memory aggregation which cautiously distributes memory accesses to minimize the latency gap between local and disaggregated memory. It also proposes NUMA-aligned tensor parallelism to further improve the computing efficiency. With these optimizations, LLM inference achieves substantial speedups. For example, first token latency improves by 61%, and end-to-end latency improves by 43% for a LLM inference task which uses a model of 66 billion parameters when the batch size is 8. Finally, to address the cost, power consumption, and volatility of DRAM, the dissertation proposes to incorporate flash memory into memory pools within the disaggregation framework. By establishing a tiered memory architecture which combines fast-tier local DRAM with slow-tier DRAM and flash memory in the memory pool and effectively migrates data based on hotness across memory tiers, this approach not only reduces expenses but also maintains the overall performance and scalability of data-intensive systems. For example, with 50% saving in memory cost, the performance degradation of training ResNet50 on ImageNet dataset is only 2.68%. Together, these contributions systematically optimize the use of memory and storage disaggregation to deliver more efficient, scalable, and cost-effective systems for supporting the data explosion in today’s and future computing systems.
Date Created
2024
Agent

Neuron-based Digital and Mixed-signal Circuit Design: From ASIC to SIMD Processors

187470-Thumbnail Image.png
Description
Among the many challenges facing circuit designers in deep sub-micron technologies, power, performance, area (PPA) and process variations are perhaps the most critical. Since existing strategies for reducing power and boosting the performance of the circuit designs have already matured

Among the many challenges facing circuit designers in deep sub-micron technologies, power, performance, area (PPA) and process variations are perhaps the most critical. Since existing strategies for reducing power and boosting the performance of the circuit designs have already matured to saturation, it is necessary to explore alternate unconventional strategies. This investigation focuses on using perceptrons to enhance PPA in digital circuits and starts by constructing the perceptron using a combination of complementary metal-oxide-semiconductor (CMOS) and flash technology. The use of flash enables the perceptron to have a variable delay and functionality, making them robust to process, voltage, and temperature variations. By replacing parts of an application-specific integrated circuit (ASIC) with these perceptrons, improvements of up to 30% in the area and 20% in power can be achieved without affecting performance. Furthermore, the ability to vary the delay of a perceptron enables circuit designers to fix setup and hold-time violations post-fabrication, while reprogramming the functionality enables the obfuscation of the circuits. The study extends to field-programmable gate arrays (FPGAs), showing that traditional FPGA architectures can also achieve improved PPA by replacing some Look-Up-Tables (LUTs) with perceptrons. Considering that replacing parts of traditional digital circuits provides significant improvements in PPA, a natural extension was to see whether circuits built dedicatedly using perceptrons as its compute unit would lead to improvements in energy efficiency. This was demonstrated by developing perceptron-based compute elements and constructing an architecture using these elements for Quantized Neural Network acceleration. The resulting circuit delivered up to 50 times more energy efficiency compared to a CMOS-based accelerator without using standard low-power techniques such as voltage scaling and approximate computing.
Date Created
2023
Agent

Vision-inspired Representation and Learning for Data-driven Signal Processing

187459-Thumbnail Image.png
Description
In the era of data explosion, massive data is generated from various sources at an unprecedented speed. The ever-growing amount of data reveals enormous opportunities for developing novel data-driven solutions to unsolved problems. In recent years, benefiting from numerous public

In the era of data explosion, massive data is generated from various sources at an unprecedented speed. The ever-growing amount of data reveals enormous opportunities for developing novel data-driven solutions to unsolved problems. In recent years, benefiting from numerous public datasets and advances in deep learning, data-driven approaches in the computer vision domain have demonstrated superior performance with high adaptability on various data and tasks. Meanwhile, signal processing has long been dominated by techniques derived from rigorous mathematical models built upon prior knowledge of signals. Due to the lack of adaptability to real data and applications, model-based methods often suffer from performance degradation and engineering difficulties. In this dissertation, multiple signal processing problems are studied from vision-inspired data representation and learning perspectives to address the major limitation on adaptability. Corresponding data-driven solutions are proposed to achieve significantly improved performance over conventional solutions. Specifically, in the compressive sensing domain, an open-source image compressive sensing toolbox and benchmark to standardize the implementation and evaluation of reconstruction methods are first proposed. Then a plug-and-play compression ratio adapter is proposed to enable the adaptability of end-to-end data-driven reconstruction methods to variable compression ratios. Lastly, the problem of transfer learning from images to bioelectric signals is experimentally studied to demonstrate the improved performance of data-driven reconstruction. In the image subsampling domain, task-adaptive data-driven image subsampling is studied to reduce data redundancy and retain information of interest simultaneously. In the semiconductor analysis domain, the data-driven automatic error detection problem is studied in the context of integrated circuit segmentation for the first time. In the light detection and ranging(LiDAR) camera calibration domain, the calibration accuracy degradation problem in low-resolution LiDAR scenarios is addressed with data-driven techniques.
Date Created
2023
Agent

Compiler Design for Accelerating Applications on Coarse-Grained Reconfigurable Architectures

168306-Thumbnail Image.png
Description
Coarse-Grained Reconfigurable Arrays (CGRAs) are emerging accelerators that promise low-power acceleration of compute-intensive loops in applications. The acceleration achieved by CGRA relies on the efficient mapping of the compute-intensive loops by the CGRA compiler onto the CGRA. The CGRA mapping

Coarse-Grained Reconfigurable Arrays (CGRAs) are emerging accelerators that promise low-power acceleration of compute-intensive loops in applications. The acceleration achieved by CGRA relies on the efficient mapping of the compute-intensive loops by the CGRA compiler onto the CGRA. The CGRA mapping problem, being NP-complete, is performed in a two-step process, scheduling, and mapping. The scheduling algorithm allocates timeslots to the nodes of the DFG, and the mapping algorithm maps the scheduled nodes onto the PEs of the CGRA. On a mapping failure, the initiation interval (II) is increased, and a new schedule is obtained for the increased II. Most previous mapping techniques use the Iterative Modulo Scheduling algorithm (IMS) to find a schedule for a given II. Since IMS generates a resource-constrained ASAP (as-soon-as-possible) scheduling, even with increased II, it tends to generate a similar schedule that is not mappable and does not explore the schedule space effectively. The problems encountered by IMS-based scheduling algorithms are explored and an improved randomized scheduling algorithm for scheduling of the application loop to be accelerated is proposed. When encountering a mapping failure for a given schedule, existing mapping algorithms either exit and retry the mapping anew, or recursively remove the previously mapped node to find a valid mapping (backtrack).Abandoning the mapping is extreme, but even backtracking may not be the best choice, since the root of the problem may not be the previous node. The challenges in existing algorithms are systematically analyzed and a failure-aware mapping algorithm is presented. The loops in general-purpose applications are often complicated loops, i.e., loops with perfect and imperfect nests and loops with nested if-then-else's (conditionals). The existing hardware-software solutions to execute branches and conditions are inefficient. A co-design approach that efficiently executes complicated loops on CGRA is proposed. The compiler transforms complex loops, maps them to the CGRA, and lays them out in the memory in a specific manner, such that the hardware can fetch and execute the instructions from the right path at runtime. Finally, a CGRA compilation simulator open-source framework is presented. This open-source CGRA simulation framework is based on LLVM and gem5 to extract the loop, map them onto the CGRA architecture, and execute them as a co-processor to an ARM CPU.
Date Created
2021
Agent

Reduced Order Models and Approximations for Hardware Acceleration of Neural Networks

161997-Thumbnail Image.png
Description
Many real-world engineering problems require simulations to evaluate the design objectives and constraints. Often, due to the complexity of the system model, simulations can be prohibitive in terms of computation time. One approach to overcome this issue is to construct

Many real-world engineering problems require simulations to evaluate the design objectives and constraints. Often, due to the complexity of the system model, simulations can be prohibitive in terms of computation time. One approach to overcome this issue is to construct a surrogate model, which approximates the original model. The focus of this work is on the data-driven surrogate models, in which empirical approximations of the output are performed given the input parameters. Recently neural networks (NN) have re-emerged as a popular method for constructing data-driven surrogate models. Although, NNs have achieved excellent accuracy and are widely used, they pose their own challenges. This work addresses two common challenges, the need for: (1) hardware acceleration and (2) uncertainty quantification (UQ) in the presence of input variability. The high demand in the inference phase of deep NNs in cloud servers/edge devices calls for the design of low power custom hardware accelerators. The first part of this work describes the design of an energy-efficient long short-term memory (LSTM) accelerator. The overarching goal is to aggressively reduce the power consumption and area of the LSTM components using approximate computing, and then use architectural level techniques to boost the performance. The proposed design is synthesized and placed and routed as an application-specific integrated circuit (ASIC). The results demonstrate that this accelerator is 1.2X and 3.6X more energy-efficient and area-efficient than the baseline LSTM. In the second part of this work, a robust framework is developed based on an alternate data-driven surrogate model referred to as polynomial chaos expansion (PCE) for addressing UQ. In contrast to many existing approaches, no assumptions are made on the elements of the function space and UQ is a function of the expansion coefficients. Moreover, the sensitivity of the output with respect to any subset of the input variables can be computed analytically by post-processing the PCE coefficients. This provides a systematic and incremental method to pruning or changing the order of the model. This framework is evaluated on several real-world applications from different domains and is extended for classification tasks as well.
Date Created
2021
Agent

FPGA-Based Edge-Computing Acceleration

161984-Thumbnail Image.png
Description
The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. Edge computing applications, such as video surveillance, autonomous driving, and augmented reality, are highly computationally intensive and require real-time processing. Current edge

The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. Edge computing applications, such as video surveillance, autonomous driving, and augmented reality, are highly computationally intensive and require real-time processing. Current edge systems are typically based on commodity general-purpose hardware such as Central Processing Units (CPUs) and Graphical Processing Units (GPUs) , which are mainly designed for large, non-time-sensitive jobs in the cloud and do not match the needs of the edge workloads. Also, these systems are usually power hungry and are not suitable for resource-constrained edge deployments. Such application-hardware mismatch calls forth a new computing backbone to support the high-bandwidth, low-latency, and energy-efficient requirements. Also, the new system should be able to support a variety of edge applications with different characteristics. This thesis addresses the above challenges by studying the use of Field Programmable Gate Array (FPGA) -based computing systems for accelerating the edge workloads, from three critical angles. First, it investigates the feasibility of FPGAs for edge computing, in comparison to conventional CPUs and GPUs. Second, it studies the acceleration of common algorithmic characteristics, identified as loop patterns, using FPGAs, and develops a benchmark tool for analyzing the performance of these patterns on different accelerators. Third, it designs a new edge computing platform using multiple clustered FPGAs to provide high-bandwidth and low-latency acceleration of convolutional neural networks (CNNs) widely used in edge applications. Finally, it studies the acceleration of the emerging neural networks, randomly-wired neural networks, on the multi-FPGA platform. The experimental results from this work show that the new generation of workloads requires rethinking the current edge-computing architecture. First, through the acceleration of common loops, it demonstrates that FPGAs can outperform GPUs in specific loops types up to 14 times. Second, it shows the linear scalability of multi-FPGA platforms in accelerating neural networks. Third, it demonstrates the superiority of the new scheduler to optimally place randomly-wired neural networks on multi-FPGA platforms with 81.1 times better throughput than the available scheduling mechanisms.
Date Created
2021
Agent

A Methodology and Formalism to Handle Timing Uncertainties in Cyber-Physical Systems

161975-Thumbnail Image.png
Description
Uncertainty is intrinsic in Cyber-Physical Systems since they interact with human and work with both analog and digital worlds. Since even minute deviation from the real values can make catastrophe in a safety-critical application, considering uncertainties in CPS behavior

Uncertainty is intrinsic in Cyber-Physical Systems since they interact with human and work with both analog and digital worlds. Since even minute deviation from the real values can make catastrophe in a safety-critical application, considering uncertainties in CPS behavior is essential. On the other side, time is a foundational aspect of Cyber-Physical Systems (CPS). Correct timing of system events is critical to optimize responsiveness to the environment, in terms of timeliness, accuracy, and precision in the knowledge, measurement, prediction, and control of CPS behavior. In order to design a more resilient and reliable CPS, first and foremost, there should be a way to specify the timing constraints that a constructed Cyber-Physical System must meet with considering existing uncertainties. Only then, we can seek systematic approaches to check if all timing constraints are being met, and develop correct-by-construction methodologies. In this regard, Timestamp Temporal Logic (TTL) is developed to specify the timing constraints on a distributed CPS. By TTL designers can specify the timing requirements that a CPS must satisfy in a succinct and intuitive manner and express the tolerable error as a part of the language. The proposed deduction system on TTL (TTL reasoning system) gives the ability to check the consistency among expresses system specifications and simplify them to be implemented on FPGA for run-time verification. Regarding CPS run-time verification, Timestamp-based Monitoring Approach(TMA) has been designed that can hook up to a CPS and take its timing specifications in TTL and verify if the timing constraints are being met with considering existing uncertainties in the system. TMA does not need to compute whether the constraint is being met at each and every instance of time but it re-evaluates constraint only when there is an event that can affect the outcome. This enables it to perform online timing monitoring of CPS for less computation and resources. Furthermore, the minimum design parameters of the timing CPS that are required to enable testing the timing of CPS are defined in this dissertation
Date Created
2021
Agent

Hardware-friendly Deep Learning for Edge Computing

161275-Thumbnail Image.png
Description
The Internet-of-Things (IoT) boosts the vast amount of streaming data. However, even considering the growth of the cloud computing infrastructure, IoT devices will generate two orders of magnitude more than the capacity that centralized data center servers can process or

The Internet-of-Things (IoT) boosts the vast amount of streaming data. However, even considering the growth of the cloud computing infrastructure, IoT devices will generate two orders of magnitude more than the capacity that centralized data center servers can process or store. This trend inevitability calls for the need for offloading IoT data processing to a decentralized edge computing infrastructure. On the other hand, deep-learning-based applications gain great progress by taking advantage of heavy centralized computing resources for training large models to fit increasingly complicated tasks. Even though large-scale deep learning models perform well in terms of accuracy, their high computational complexity makes it impossible to offload them onto edge devices for real-time inference and timely response. To enable timely IoT services on edge devices, this dissertation addresses the challenge from two perspectives. On the hardware side, a new field-programmable gate array (FPGA)-based framework for binary neural network and an application-specific integrated circuit (ASIC) accelerator for natural scene text interpretation are proposed, with the awareness of the computing resources and power constraint on edge. On the algorithm side, this work presents both the methodology of building more compact models and finding better computation-accuracy trade-off for existing models.
Date Created
2021
Agent

Learning in Compressed Domains

161270-Thumbnail Image.png
Description
A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for

A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for data compression, compressive sensing and reconstruction, and compressed learning (learning directly upon compressed data) to overcome the data-explosion challenge. While prior works are predominantly model-based, focus on small models, and not suitable for task-oriented sensing or hardware acceleration, the number of available models for compression-related tasks has escalated by orders of magnitude in the past decade. Motivated by this significant growth and the success of big data, this dissertation proposes to revolutionize both the compressive sensing reconstruction (CSR) and compressed learning (CL) methods from the data-driven perspective. In this dissertation, a series of topics on data-driven CSR are discussed. Individual data-driven models are proposed for the CSR of bio-signals, images, and videos with improved compression ratio and recovery fidelity trade-off. Specifically, a scalable Laplacian pyramid reconstructive adversarial network (LAPRAN) is proposed for single-image CSR. LAPRAN progressively reconstructs images following the concept of the Laplacian pyramid through the concatenation of multiple reconstructive adversarial networks (RANs). For the CSR of videos, CSVideoNet is proposed to improve the spatial-temporal resolution of reconstructed videos. Apart from CSR, data-driven CL is discussed in the dissertation. A CL framework is proposed to extract features directly from compressed data for image classification, objection detection, and semantic/instance segmentation. Besides, the spectral bias of neural networks is analyzed from the frequency perspective, leading to a learning-based frequency selection method for identifying the trivial frequency components which can be removed without accuracy loss. Compared with the conventional spatial downsampling approaches, the proposed frequency-domain learning method can achieve higher accuracy with reduced input data size. The methodologies proposed in this dissertation are not restricted to the above-mentioned applications. The dissertation also discusses other potential applications and directions for future research.
Date Created
2021
Agent