Continual Learning with Novelty Detection: Algorithms and Applications to Image and Microelectronic Design

193492-Thumbnail Image.png
Description
Machine learning techniques have found extensive application in dynamic fields like drones, self-driving vehicles, surveillance, and more. Their effectiveness stems from meticulously crafted deep neural networks (DNNs), extensive data gathering efforts, and resource-intensive model training processes. However, due to the

Machine learning techniques have found extensive application in dynamic fields like drones, self-driving vehicles, surveillance, and more. Their effectiveness stems from meticulously crafted deep neural networks (DNNs), extensive data gathering efforts, and resource-intensive model training processes. However, due to the unpredictable nature of the environment, these systems will inevitably encounter input samples that deviate from the distribution of their original training data, resulting in instability and performance degradation.To effectively detect the emergence of out-of-distribution (OOD) data, this dissertation first proposes a novel, self-supervised approach that evaluates the Mahalanobis distance between the in-distribution (ID) and OOD in gradient space. A binary classifier is then introduced to guide the label selection for gradients calculation, which further boosts the detection performance. Next, to continuously adapt the new OOD into the existing knowledge base, an unified framework for novelty detection and continual learning is proposed. The binary classifier, trained to distinguish OOD data from ID, is connected sequentially with the pre-trained model to form a “N + 1” classifier, where “N” represents prior knowledge which contains N classes and “1” refers to the newly arrival OOD. This continual learning process continues as “N+1+1+1+...”, assimilating the knowledge of each new OOD instance into the system. Finally, this dissertation demonstrates the practical implementation of novelty detection and continual learning within the domain of thermal analysis. To rapidly address the impact of voids in thermal interface material (TIM), a continuous adaptation approach is proposed, which integrates trainable nodes into the graph at the locations where abnormal thermal behaviors are detected. With minimal training overhead, the model can quickly adapts to the change caused by the defects and regenerate accurate thermal prediction. In summary, this dissertation proposes several algorithms and practical applications in continual learning aimed at enhancing the stability and adaptability of the system. All proposed algorithms are validated through extensive experiments conducted on benchmark datasets such as CIFAR-10, CIFAR-100, TinyImageNet for continual learning, and real thermal data for thermal analysis.
Date Created
2024
Agent

LUCI: Multi-Application Orchestration Agent

193050-Thumbnail Image.png
Description
Research in building agents by employing Large Language Models (LLMs) for computer control is expanding, aiming to create agents that can efficiently automate complex or repetitive computational tasks. Prior works showcased the potential of Large Language Models (LLMs) with in-context

Research in building agents by employing Large Language Models (LLMs) for computer control is expanding, aiming to create agents that can efficiently automate complex or repetitive computational tasks. Prior works showcased the potential of Large Language Models (LLMs) with in-context learning (ICL). However, they suffered from limited context length and poor generalization of the underlying models, which led to poor performance in long-horizon tasks, handling multiple applications and working across multiple domains. While initial work focused on extending the coding capabilities of LLMs to work with APIs to accomplish tasks, a new body of work focused on Graphical User Interface (GUI) manipulation has shown strong success in web and mobile application automation. In this work, I introduce LUCI: Large Language Model-assisted User Control Interface, a hierarchical, modular, and efficient framework to extend the capabilities of LLMs to automate GUIs. LUCI utilizes the reasoning capabilities of LLMs to decompose tasks into sub-tasks and recursively solve them. A key innovation is the application-centric approach which creates sub-tasks by first selecting the applications needed to solve the prompt. The GUI application is decomposed into a novel compressed Information-Action-Field (IAF) representation based on the underlying syntax tree. Furthermore, LUCI follows a modular structure allowing it to be extended to new platforms without any additional training as the underlying reasoning works on my IAF representations. These innovations alongside the `ensemble of LLMs' structure allow LUCI to outperform previous supervised learning (SL), reinforcement learning (RL), and LLM approaches on Miniwob++, overcoming challenges such as limited context length, exemplar memory requirements, and human intervention for task adaptability. LUCI shows a 20% improvement over the state-of-the-art (SOTA) in GUI automation on the Mind2Web benchmark. When tested in a realistic setting with over 22 commonly used applications, LUCI achieves an 80% success rate in undertaking tasks that use a subset of these applications. I also note an over 70% success rate on unseen applications, which is a less than 5% drop as compared to the fine-tuned applications.
Date Created
2024
Agent