Deterministic scheduling for transmission-constrained power systems amid uncertainty

153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
Date Created
2015
Agent

An optimization model for timetabling and vehicle assignment for urban bus systems

Description
To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve

To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as well as social satisfaction. The model was verified by a series of case studies and simulation from which some interesting conclusions were drawn.
Date Created
2014
Agent

An agent-based optimization framework for engineered complex adaptive systems with application to demand response in electricity markets

152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
Date Created
2013
Agent

A pairwise comparison matrix framework for large-scale decision making

151545-Thumbnail Image.png
Description
A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of criteria or alternatives and are integral components of widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP).

A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of criteria or alternatives and are integral components of widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, a PCM suffers from several issues limiting its application to large-scale decision problems, specifically: (1) to the curse of dimensionality, that is, a large number of pairwise comparisons need to be elicited from a decision maker (DM), (2) inconsistent and (3) imprecise preferences maybe obtained due to the limited cognitive power of DMs. This dissertation proposes a PCM Framework for Large-Scale Decisions to address these limitations in three phases as follows. The first phase proposes a binary integer program (BIP) to intelligently decompose a PCM into several mutually exclusive subsets using interdependence scores. As a result, the number of pairwise comparisons is reduced and the consistency of the PCM is improved. Since the subsets are disjoint, the most independent pivot element is identified to connect all subsets. This is done to derive the global weights of the elements from the original PCM. The proposed BIP is applied to both AHP and ANP methodologies. However, it is noted that the optimal number of subsets is provided subjectively by the DM and hence is subject to biases and judgement errors. The second phase proposes a trade-off PCM decomposition methodology to decompose a PCM into a number of optimally identified subsets. A BIP is proposed to balance the: (1) time savings by reducing pairwise comparisons, the level of PCM inconsistency, and (2) the accuracy of the weights. The proposed methodology is applied to the AHP to demonstrate its advantages and is compared to established methodologies. In the third phase, a beta distribution is proposed to generalize a wide variety of imprecise pairwise comparison distributions via a method of moments methodology. A Non-Linear Programming model is then developed that calculates PCM element weights which maximizes the preferences of the DM as well as minimizes the inconsistency simultaneously. Comparison experiments are conducted using datasets collected from literature to validate the proposed methodology.
Date Created
2013
Agent

A simulation study of Kanban levels for assembly lines and systems

151029-Thumbnail Image.png
Description
In the entire supply chain, demand planning is one of the crucial aspects of the production planning process. If the demand is not estimated accurately, then it causes revenue loss. Past research has shown forecasting can be used to hel

In the entire supply chain, demand planning is one of the crucial aspects of the production planning process. If the demand is not estimated accurately, then it causes revenue loss. Past research has shown forecasting can be used to help the demand planning process for production. However, accurate forecasting from historical data is difficult in today's complex volatile market. Also it is not the only factor that influences the demand planning. Factors, namely, Consumer's shifting interest and buying power also influence the future demand. Hence, this research study focuses on Just-In-Time (JIT) philosophy using a pull control strategy implemented with a Kanban control system to control the inventory flow. Two different product structures, serial product structure and assembly product structure, are considered for this research. Three different methods: the Toyota Production System model, a histogram model and a cost minimization model, have been used to find the number of kanbans that was used in a computer simulated Just-In-Time Kanban System. The simulation model was built to execute the designed scenarios for both the serial and assembly product structure. A test was performed to check the significance effects of various factors on system performance. Results of all three methods were collected and compared to indicate which method provides the most effective way to determine number of kanbans at various conditions. It was inferred that histogram model and cost minimization models are more accurate in calculating the required kanbans for various manufacturing conditions. Method-1 fails to adjust the kanbans when the backordered cost increases or when product structure changes. Among the product structures, serial product structures proved to be effective when Method-2 or Method-3 is used to calculate the kanban numbers for the system. The experimental result data also indicated that the lower container capacity collects more backorders in the system, which increases the inventory cost, than the high container capacity for both serial and assembly product structures.
Date Created
2012
Agent

Production scheduling and system configuration for capacitated flow lines with application in the semiconductor backend process

149754-Thumbnail Image.png
Description
A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable

A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process is still very difficult due to the wide product mix, large number of parallel machines, product family related setups, machine-product qualification, and weekly demand consisting of thousands of lots. In this research, a novel mixed-integer-linear-programming (MILP) model is proposed for the batch production scheduling of a semiconductor back-end facility. In the MILP formulation, the manufacturing process is modeled as a flexible flow line with bottleneck stages, unrelated parallel machines, product family related sequence-independent setups, and product-machine qualification considerations. However, this MILP formulation is difficult to solve for real size problem instances. In a semiconductor back-end facility, production scheduling usually needs to be done every day while considering updated demand forecast for a medium term planning horizon. Due to the limitation on the solvable size of the MILP model, a deterministic scheduling system (DSS), consisting of an optimizer and a scheduler, is proposed to provide sub-optimal solutions in a short time for real size problem instances. The optimizer generates a tentative production plan. Then the scheduler sequences each lot on each individual machine according to the tentative production plan and scheduling rules. Customized factory rules and additional resource constraints are included in the DSS, such as preventive maintenance schedule, setup crew availability, and carrier limitations. Small problem instances are randomly generated to compare the performances of the MILP model and the deterministic scheduling system. Then experimental design is applied to understand the behavior of the DSS and identify the best configuration of the DSS under different demand scenarios. Product-machine qualification decisions have long-term and significant impact on production scheduling. A robust product-machine qualification matrix is critical for meeting demand when demand quantity or mix varies. In the second part of this research, a stochastic mixed integer programming model is proposed to balance the tradeoff between current machine qualification costs and future backorder costs with uncertain demand. The L-shaped method and acceleration techniques are proposed to solve the stochastic model. Computational results are provided to compare the performance of different solution methods.
Date Created
2011
Agent

Multi-objective operating room planning and scheduling

149481-Thumbnail Image.png
Description
Surgery is one of the most important functions in a hospital with respect to operational cost, patient flow, and resource utilization. Planning and scheduling the Operating Room (OR) is important for hospitals to improve efficiency and achieve high quality of

Surgery is one of the most important functions in a hospital with respect to operational cost, patient flow, and resource utilization. Planning and scheduling the Operating Room (OR) is important for hospitals to improve efficiency and achieve high quality of service. At the same time, it is a complex task due to the conflicting objectives and the uncertain nature of surgeries. In this dissertation, three different methodologies are developed to address OR planning and scheduling problem. First, a simulation-based framework is constructed to analyze the factors that affect the utilization of a catheterization lab and provide decision support for improving the efficiency of operations in a hospital with different priorities of patients. Both operational costs and patient satisfaction metrics are considered. Detailed parametric analysis is performed to provide generic recommendations. Overall it is found the 75th percentile of process duration is always on the efficient frontier and is a good compromise of both objectives. Next, the general OR planning and scheduling problem is formulated with a mixed integer program. The objectives include reducing staff overtime, OR idle time and patient waiting time, as well as satisfying surgeon preferences and regulating patient flow from OR to the Post Anesthesia Care Unit (PACU). Exact solutions are obtained using real data. Heuristics and a random keys genetic algorithm (RKGA) are used in the scheduling phase and compared with the optimal solutions. Interacting effects between planning and scheduling are also investigated. Lastly, a multi-objective simulation optimization approach is developed, which relaxes the deterministic assumption in the second study by integrating an optimization module of a RKGA implementation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to search for Pareto optimal solutions, and a simulation module to evaluate the performance of a given schedule. It is experimentally shown to be an effective technique for finding Pareto optimal solutions.
Date Created
2010
Agent