Prediction of Multicomponent Gas Adsorption Equilibrium Using Ideal Adsorbed Solution Theory for Direct Air Capture

168827-Thumbnail Image.png
Description
Adsorption equilibrium is an important metric used to assess adsorbent performance for gas mixture separation processes. Gas adsorption processes such as carbon capture are becoming more urgent as climate change and global warming accelerate. To speed up and reduce the

Adsorption equilibrium is an important metric used to assess adsorbent performance for gas mixture separation processes. Gas adsorption processes such as carbon capture are becoming more urgent as climate change and global warming accelerate. To speed up and reduce the cost of research on adsorbent materials and adsorption processes, I developed an open-source Python code that generates mixed gas adsorption equilibrium data using pure gas adsorption isotherms based on the ideal adsorbed solution theory (IAST). The major efforts of this M.S. research were placed on adding additional components to the mixture models since most other publications focused on binary gas mixtures. Generated mixed-gas equilibrium data were compared to experimentally collected data in order to validate the multicomponent IAST model and to determine the accuracy of the computer codes developed in this work. Additional mixed-gas equilibrium data were then generated and analyzed for trends in the data for humid flue gas conditions, natural gas processing conditions, and hydrogen gas purification conditions. For humid flue gas conditions, neither the analyzed Mg-MOF-74 nor the Zeolite 13X were shown to be suitable for use. For natural gas processing conditions, the Zeolite 13X was determined to be a much better candidate for use than the MIL-101. For hydrogen gas purification conditions, the Zeolite 5A was determined to be a better adsorbent for use than CD-AC due to the Zeolite 5A’s much lower adsorption of H2.
Date Created
2022
Agent

Synthesis, Characterization and Oxygen Adsorption Properties of Substituted Aluminophosphate (AlPO4-5, AFI) Zeolites

161946-Thumbnail Image.png
Description
The objective of this research was to develop Aluminophosphate-five (AlPO4-5, AFI) zeolite adsorbents for efficient oxygen removal from a process stream to support an on-going Department of Energy (DOE) project on solar energy storage. A molecular simulation study predicted that

The objective of this research was to develop Aluminophosphate-five (AlPO4-5, AFI) zeolite adsorbents for efficient oxygen removal from a process stream to support an on-going Department of Energy (DOE) project on solar energy storage. A molecular simulation study predicted that substituted AlPO4-5 zeolite can adsorb O2 through a weak chemical bond at ambient temperature. Substituted AlPO4-5 zeolite was successfully synthesized via hydrothermal crystallization by following carefully designed procedures to tailor the zeolite for efficient O2 adsorption. Synthesized AlPO4-5 in this work included Sn/AlPO-5, Mo/AlPO-5, Pd/AlPO-5, Si/AlPO-5, Mn/AlPO-5, Ce/AlPO-5, Fe/AlPO-5, CuCe/AlPO-5, and MnSnSi/AlPO-5. While not all zeolite samples synthesized were fully characterized, selected zeolite samples were characterized by powder x-ray diffraction (XRD) for crystal structure confirmation and phase identification, and nitrogen adsorption for their pore textural properties. The Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution were between 172 m2 /g - 306 m2 /g and 6Å - 9Å, respectively, for most of the zeolites synthesized. Samples of great interest to this project such as Sn/AlPO-5, Mo/AlPO-5 and MnSnSi/AlPO-5 were also characterized using x-ray photoelectron spectroscopy (XPS) and energy-dispersive x-ray spectroscopy (EDS) for elemental analysis, scanning electron microscopy (SEM) for morphology and particle size estimation, and electron paramagnetic resonance (EPR) for nature of adsorbed oxygen. Oxygen and nitrogen adsorption experiments were carried out in a 3-Flex adsorption apparatus (Micrometrics) at various temperatures (primarily at 25℃) to determine the adsorption properties of these zeolite samples as potential adsorbents for oxygen/nitrogen separation. Experiments showed that some of the zeolite samples adsorb little-to-no oxygen and nitrogen at 25℃, while other zeolites such as Sn/AlPO-5, Mo/AlPO-5, and MnSnSi/AlPO-5 adsorb decent but inconsistent amounts of oxygen with the highest observed values of about 0.47 mmol/ g, 0.56 mmol/g, and 0.84 mmol/ g respectively. The inconsistency in adsorption is currently attributed to non-uniform doping of the zeolites, and these findings validate that some substituted AlPO4-5 zeolites are promising adsorbents. However, more investigations are needed to verify the causes of this inconsistency to develop a successful AlPO4-5 zeolite-based adsorbent for oxygen/nitrogen separation.
Date Created
2021
Agent

Application of Ultrasound in Regeneration of Adsorbents

161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
Date Created
2021
Agent

Electrode-Coated Inorganic Separators for High Performance and Safe Lithium-Ion and Lithium-Metal Batteries

161285-Thumbnail Image.png
Description
Lithium-ion and lithium-metal batteries are deemed to be the choice of energy storage media for the future. However, they are not entirely safe and their performance in terms of cycle life and charging rates is sub-optimal. A majority of these

Lithium-ion and lithium-metal batteries are deemed to be the choice of energy storage media for the future. However, they are not entirely safe and their performance in terms of cycle life and charging rates is sub-optimal. A majority of these issues arise from the currently used flammable polyolefinic separators and carbonate solvent based electrolytes. This work utilizes in-house developed and specific property tuned electrode-coated inorganic separators in combination with a fire-proof electrolyte to resolve the above stated concerns.Firstly, to improve the safety of the lithium-ion cell with a commercial polypropylene separator a thermally stable in-house developed electrode coated quartz silica separator is utilized. The silica separator due to its better electrolyte wettability, electrolyte uptake and lower resistance also offers better capacity retention (~ 15 %) at high rates of discharge. Subsequently, research on developing a completely safe lithium-ion battery was conducted by replacing the traditional carbonate solvent based electrolyte with a fire-proof lithium bis-fluoro sulphonyl-imide salt/tri-methyl phosphate solvent electrolyte. However, this electrolyte has a high viscosity and low separator wetting rate. A microporous in house synthesized silicalite electrode-coated separator due to its high surface energy functionalizes the viscous fire-proof electrolyte and together they are tested in a full-cell. The intra-particle pores of the silicalite separator result in a thinner and more robust solid electrolyte interface on graphite. This results in about 20 % higher capacity retention during long term cycling when compared to the polypropylene separator used in the same full-cell. To enable stable and fast charging lithium-metal batteries free from dendrite propagation related failure, plate shaped γ-alumina and silicalite electrode-coated separators with high tortuosity are developed and used in a lithium-metal full-cell battery, with the former separator having no intra-particle pores and the latter having them. The γ-alumina separators show improvements in dendrite propagation prevention up to 3 C-rate of charge/discharge but a loss in active lithium is seen beyond the 75th cycle. However, microporous plate-shaped silicalite separators did not show any loss in active lithium even at 3 C-rate for 100 cycles due to the homogenized lithium-ion flux at the anode, while also preventing dendrite propagation.
Date Created
2021
Agent

The Evaluation of Algae-Derived Activated Carbon Adsorbents for Direct CO2 Capture from Ambient Air

147875-Thumbnail Image.png
Description

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were synthesized and then studied for their adsorption<br/>isotherms and adsorption breakthrough behavior. From the generated isotherm plots, it was<br/>determined that the carbonization temperature was not high enough and that more batches of<br/>adsorbent would have to be made to more accurately analyze the adsorptive potential of the<br/>algae-derived carbon adsorbent.

Date Created
2021-05
Agent

Adsorptive CO2 Capture from Ambient Air by Zeolite

148012-Thumbnail Image.png
Description

Carbon capture has been a highly sought-after technology for decades because of its<br/>capabilities to restore atmospheric damage done by greenhouse gasses. Thanks to evolving<br/>separation techniques, carbon capture is becoming more efficient with every new discovery in<br/>the field. Currently the biggest

Carbon capture has been a highly sought-after technology for decades because of its<br/>capabilities to restore atmospheric damage done by greenhouse gasses. Thanks to evolving<br/>separation techniques, carbon capture is becoming more efficient with every new discovery in<br/>the field. Currently the biggest problems that carbon capture are facing is the cost of<br/>manufacturing material to aid the process and obtaining ideal conditions for removal of carbon<br/>from air and devising solutions for removal of CO2 in ambient and flue gas conditions.<br/>This Honors Thesis is a continuation of Dr. Shuguang Deng and Dr. Mai Xu’s research<br/>initiative to manufacture and test various zeolitic CO2 removal efficiencies. The goals of this<br/>Honors Thesis are to investigate the adsorption/desorption kinetics and isothermal equilibrium<br/>CO2 capacity of a NaX nanozeolite under ambient air conditions.<br/>What was determined from the following testing was that the zeolite of interest had a<br/>higher adsorption capacity of CO2 at lower temperatures, had a maximum equilibrium quantity<br/>adsorbed of 0.203 mmol/g for CO2 and 0.367 mmol/g of N2, had a maximum breakthrough CO2<br/>capacity of 0.101 mmol of CO2 per gram of zeolite at dry conditions and 298.15K and this<br/>linearly decreased to 0.040 mmol/g at 25% relative humidity.

Date Created
2021-05
Agent

Production of Renewable Fuels from Bio-Based Feedstocks: A Viable Path to Enhance Value Chain and Sustainability

158878-Thumbnail Image.png
Description
The continued reliance on fossil fuel for energy resources has proven to be unsustainable, leading to depletion of world reserves and emission of greenhouse gases during their combustion. Therefore, research initiatives to develop potentially carbon-neutral biofuels were given the highest

The continued reliance on fossil fuel for energy resources has proven to be unsustainable, leading to depletion of world reserves and emission of greenhouse gases during their combustion. Therefore, research initiatives to develop potentially carbon-neutral biofuels were given the highest importance. Hydrothermal liquefaction (HTL, a thermochemical conversion process) of microalgae is recognized as a favorable and efficient technique to produce liquid biofuels from wet feedstocks. In this work, three different microalgae (Kirchneriella sp., Galdieria sulphuraria, Micractinium sp.) grown and harvested at Arizona State University were hydrothermally liquefied to optimize their process conditions under different temperatures (200-375 °C), residence times (15-60 min), solids loadings (10-20 wt.%), and process pressures (9-24 MPa). A one-factor-at-a-time approach was employed, and comprehensive experiments were conducted at 10 % solid loadings and a residence time of 30 min. Co-liquefaction of Salicornia bigelovii Torr. (SL), Swine manure (SM) with Cyanidioschyzon merolae (CM) was tested for the presence of synergy. A positive synergistic effect was observed during the co-liquefaction of biomasses, where the experimental yield (32.95 wt.%) of biocrude oil was higher than the expected value (29.23 wt.% ). Co-liquefaction also led to an increase in the energy content of the co-liquefied biocrude oil and a higher energy recovery rate ( 88.55 %). The HTL biocrude was measured for energy content, elemental, and chemical composition using GC-MS. HTL aqueous phase was analyzed for potential co-products by spectrophotometric techniques and is rich in soluble carbohydrates, dissolved ammoniacal nitrogen, and phosphates. HTL biochar was studied for its nutrient content (nitrogen and phosphorous) and viability of its recovery to cultivate algae without any inhibition using the nutrient leaching. HTL biochar was also studied to produce hydrogen via pyrolysis using a membrane reactor at 500 °C, 1 atm, for 24 h to produce 5.93 wt.% gas. The gaseous product contains 45.7 mol % H2, 44.05 ml % CH4, and 10.25 mol % of CO. The versatile applications of HTL biochar were proposed from a detailed physicochemical characterization. The metal impurities in the algae, bio-oil, and biochar were quantified by ICP-OES where algae and biochar contain a large proportion of phosphorous and magnesium.
Date Created
2020
Agent

Implications of Bio-modification on Moisture Damage Mechanisms in Asphalt Binder Matrix

158457-Thumbnail Image.png
Description

Bio-modification of asphalt binder brings significant benefits in terms of increasing sustainable and environmental practices, stabilizing prices, and decreasing costs. However, bio-modified asphalt binders have shown varying performance regarding susceptibility to moisture damage; some bio-oil modifiers significantly increase asphalt binder's

Bio-modification of asphalt binder brings significant benefits in terms of increasing sustainable and environmental practices, stabilizing prices, and decreasing costs. However, bio-modified asphalt binders have shown varying performance regarding susceptibility to moisture damage; some bio-oil modifiers significantly increase asphalt binder's susceptibility to moisture damage. This variability in performance is largely due to the large number of bio-masses available for use as sources of bio-oil, as well as the type of processing procedure followed in converting the bio-mass into a bio-oil for modifying asphalt binder. Therefore, there is a need for a method of properly evaluating the potential impact of a bio-oil modifier for asphalt binder on the overall performance of asphalt pavement, in order to properly distinguish whether a particular bio-oil modifier increases or decreases the moisture susceptibility of asphalt binder. Therefore, the goal of this study is a multi-scale investigation of bio-oils with known chemical compositions to determine if there is a correlation between a fundamental property of a bio-oil and the resulting increase or decrease in moisture susceptibility of a binder when it is modified with the bio-oil. For instance, it was found that polarizability of asphalt constituents can be a promising indicator of moisture susceptibility of bitumen. This study will also evaluate the linkage of the fundamental property to newly developed binder-level test methods. It was found that moisture-induced shear thinning of bitumen containing glass beads can differentiate moisture susceptible bitumen samples. Based on the knowledge determined, alternative methods of reducing the moisture susceptibility of asphalt pavement will also be evaluated. It was shown that accumulation of acidic compounds at the interface of bitumen and aggregate could promote moisture damage. It was further found that detracting acidic compounds from the interface could be done by either of neutralizing active site of stone aggregate to reduce affinity for acids or by arresting acidic compounds using active mineral filler. The study results showed there is a strong relation between composition of bitumen and its susceptibility to moisture. This in turn emphasize the importance of integrating knowledge of surface chemistry and bitumen composition into the pavement design and evaluation.

Date Created
2020
Agent

Heteroatoms Doped Nanocarbon for Supercapacitors

158096-Thumbnail Image.png
Description
This dissertation describes the synthesis and study of porous nanocarbon and further treatment by introducing nitrogen and oxygen groups on nanocarbon, which can be used as electrodes for energy storage (supercapacitor). Electron microscopy is used to make nanoscale characterization. ZnO

This dissertation describes the synthesis and study of porous nanocarbon and further treatment by introducing nitrogen and oxygen groups on nanocarbon, which can be used as electrodes for energy storage (supercapacitor). Electron microscopy is used to make nanoscale characterization. ZnO nanowires are used as the template of the porous nanocarbon, and nitrogen doping and oxidation treatment can help further increase the capacitive performance of the nanocarbon.

The first part of this thesis focuses on the synthesis of ZnO nanowires. Uniform ZnO nanowires with ~30 nm in width are produced at 1100℃ in a tube furnace with flowing gases (N2: 500 sccm; O2: 15 sccm). The temperature control is one of the most important parameters for making thin and ultra-long ZnO nanowires.

The second part of the thesis is about the synthesis of nanocarbons. Ultrapure ethanol is used as the carbon source to make carbonaceous deposition on ZnO nanowires. The thickness of the nanocarbons can be controlled by reaction temperature and reaction time. When the reaction time was controlled around 1h, the carbonaceous materials coating the ZnO nanowires become very thin. Then by flowing (1000 sccm) hydrogen at 750℃ through the reaction tube the ZnO nanowires are removed due to reduction and evaporation. Electrochemical evaluation of the produced nanocarbons shows that the nanocarbons possess very high specific surface area (>1400 m2/g) and a capacitance as high as 180 F/g at 10A/g in 6M KOH).

The third part of the thesis is the treatment of the as-synthesized nanocarbons to further increase capacitance. NH3 was used as the nitrogen source to react with nanocarbons at 700℃ to incorporate nitrogen group. Nitric acid (HNO3) is used as the oxidant to introduce oxygen groups. After proper nitrogen doping, the nitrogen doped nanocarbons can show high specific capacitance of 260 F/g at 1A/g in 6M KOH. After further oxidation treatment, the capacitance of the oxidized N-doped nanocarbons increased to 320 F/g at 1A/g in 6M KOH.
Date Created
2020
Agent

Experimental and Simulation Study on Novel Adsorbents for Carbon Capture, Oxygen Sorption, and Methane Recovery

158079-Thumbnail Image.png
Description
Global warming resulted from greenhouse gases emission has received widespread attention. Meanwhile, it is required to explore renewable and environmentally friendly energy sources due to the severe pollution of the environment caused by fossil fuel combustion. In order to realize

Global warming resulted from greenhouse gases emission has received widespread attention. Meanwhile, it is required to explore renewable and environmentally friendly energy sources due to the severe pollution of the environment caused by fossil fuel combustion. In order to realize a substantial adsorption process to resolve the environmental issues, the development of new adsorbents with improved properties has become the most critical issue. This dissertation presents the work of four individual but related studies on systematic characterization and process simulations of novel adsorbents with superior adsorption properties.

A perovskite oxide material, La0.1Sr0.9Co0.9Fe0.1O3-δ (LSCF1991), was investigated first for high-temperature air separation. The oxygen sorption/desorption behavior of LSCF1991 was studied by thermogravimetric analysis (TGA) and fixed-bed breakthrough experiments. A parametric study was performed to design and optimize the operating parameters of the high-temperature air separation process by pressure swing adsorption (PSA). The results have shown great potential for applying LSCF1991 to the high-temperature air separation due to its excellent separation performance and low energy requirement.

Research on using nanostructured zeolite NaX (NZ) as adsorbents for CO2 capture was subsequently conducted. The CO2/N2 adsorption characterizations indicated that the NZ samples lead to enhanced adsorption properties compared with the commercial zeolites (MZ). From the two-bed six-step PSA simulation, NZ saved around 30% energy over MZ for CO2 capture and recovery while achieving a higher CO2 purity and productivity.

A unique screening method was developed for efficient evaluation of adsorbents for PSA processes. In the case study, 47 novel adsorbents have been screened for coal bed methane (CBM) recovery. The adsorbents went through scoring-based prescreening, PSA simulation, and optimization. The process performance indicators were correlated with the adsorption selectivity and capacities, which provides new insights for predicting the PSA performance.

A new medium-temperature oxygen sorbent, YBaCo4O7+δ (YBC114), was investigated as an oxygen pumping material to facilitate solar thermochemical fuel production. The oxygen uptake and release attributes of YBC114 were studied by both TGA and a small-scale evacuation test. The study proved that the particle size has a significant effect on the oxygen pumping behavior of YBC114, especially for the uptake kinetics.
Date Created
2020
Agent